
Hyper-dimensional computing for a visual
question-answering system that is trainable

end-to-end

Guglielmo Montone
Laboratoire Psychologie de la Perception

Université Paris Descartes
75006 Paris, France

montone.guglielmo@gmail.com

J.Kevin O’Regan
Laboratoire Psychologie de la Perception

Université Paris Descartes
75006 Paris, France

jkevin.oregan@gmail.com

Alexander V. Terekhov
Laboratoire Psychologie de la Perception

Université Paris Descartes
75006 Paris, France

avterekhov@gmail.com

Abstract

In this work we propose a system for visual question answering. Our architecture
is composed of two parts, the first part creates the logical knowledge base given the
image. The second part evaluates questions against the knowledge base. Differently
from previous work, the knowledge base is represented using hyper-dimensional
computing. This choice has the advantage that all the operations in the system,
namely creating the knowledge base and evaluating the questions against it, are
differentiable, thereby making the system easily trainable in an end-to-end fashion.

1 Introduction

Visual Question Answering (VQA) or Visual Turing Test are terms that refer to a task in which
a machine is provided with a picture and a question about a picture and the machine is asked to
return the answer to the question. Such tasks have become popular in the last year thanks to the
emergence of several datasets containing images, with associated questions and answers [8, 1].
Classical deep neural network approaches face these tasks by training architectures composed of
several parts. In these architectures there are often a RNN (often an LSTM) for encoding the question
and for producing the answer, and a CNN for analyzing the image [2, 7]. The main idea behind such
architectures is to project the question and the image into a relatively low dimensional space where
the two are compared. These approaches give impressive results when the question is about simple
properties of the image like "What is the color of the bus?". However the results become worse when
the question is more complex and involves verifying one or more relations among objects in the
picture ("Is the fruit in the plate different from the one in the basket?").
Another group of approaches builds architectures with a perceiver and an evaluator [5]. The perceiver
receives the image as input and has to build the knowledge base relative to the input. The evaluator,
executes the question against the knowledge base to produce an answer. The disadvantage of such
approaches is that the computations performed by the different parts of the system are of very different
nature, leading to cumbersome architectures that are complex to train in an end-to-end fashion.
The main contribution of this work is to show that, at least in the simple case we propose, it is possible
to build an architecture where the evaluator performs computations of the same kind as the perceiver.
It is for this reason that the architecture can be easily trained in an end-to-end fashion. In particular

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Figure 1: Some images in the dataset

in our architecture we will exploit the properties of hyper-dimensional computing (HD-computing)
[4]. It is well known in fact that, by defining vectors in a high-dimensional space (HD-vectors), it is
possible to store and then retrieve information from these vectors with very simple operations [4]. We
will use HD-vectors to store the values of logical constants, and also the values of relations among
these constants that will constitute the knowledge base of the system. In our architecture a FFW
network will be asked to associate to each image in the input the HD-vector describing the image.
The HD-vector returned as output can then be queried to extract answers to given questions, with
such questions consisting in sets of differentiable operations on the HD-vectors. The parameters of
the network will be updated with a gradient descent procedure in order to minimize the number of
wrong answers. In the present paper we prove that this architecture can be successfully trained on a
simple VQA task.
The paper is organized as follows, in section 2 we present the dataset, in 3 we show how it is possible
to encode the knowledge base in an HD-vector and then to retrieve information from it. Finally in
section 4 we describe the training procedure and comment on the results of the tests.

2 Dataset

The dataset is composed of 28x28 RGB images. In each image there are two geometrical figures of
four possible colors. The geometrical figures can be in four different positions in the image, namely
top-left, top-right, bottom-left, bottom-right. The colors and shapes used are the following:

• colors: red, green, magenta, orange;

• shapes: circle, square, triangle, cross.

All possible images containing two figures were created. A sample of the images in the dataset is
presented in Figure 1. The number of total images was 3072. 30% of these images were used as test
set, and the rest of the images were used as training set.

3 HD representation of the knowledge base

Each picture in the dataset can be described in terms of the following set of natural language concepts:
"position", "color", "shape", "top-left", "top-right", "bottom-left", "bottom-right", "red", "green",
"magenta", "orange", "circle", "square", "triangle", "cross". For example the first picture of Figure
1 can be described by the following sentence: "In position top-left there is a shape of type square
and color magenta; and in position top-right there is a shape of type square and color green". In
the following we show how by using a method known as HD-computing, it is possible to store and
retrieve the information contained in this sentence in one vector [3, 6].
We will take the HD-vectors to be 1000 dimensional vectors where each component is randomly

2

chosen to be 1 or -1. We will label HD-vectors using letters in italics, like k,m, n. Let’s define two
operations over the HD-vectors: entangle and grouping. Entangle is defined as follows:

⊗ : k = m⊗ n ⇔ ki = XOR(mi, ni) ∀i ∈ {1, . . . , 1000} (1)

Please notice that XOR = (XOR)−1, so we will sometimes refer to the previous operation also as
dis-entangle. Grouping is defined as follows:

⊕ : k = m⊕ n ⇔ ki = mi + ni ∀i ∈ {1, . . . , 1000} (2)

Also it will be useful to define a distance between two vectors. We choose as distance the following
function:

cos(m,n) =

∑
i(mi · ni)√

(
∑

i m
2
i) · (

∑
i n

2
i)

(3)

We associate each of the concepts listed in the previous paragraph with a random HD-vector. The
HD-vector representing a concept will have the same name as the concept but it will be written in
italics. So for example to the concept "color" will correspond the HD-vector color.
To each image in the dataset we can associate an HD-vector in the following way that we will illustrate
with an example. Consider the first picture in Figure 1. The natural language description of the
picture is the following: "In the position top-left there is a shape of type square and color magenta.
And in the position top-right there is a shape of type square and color green". To such a description
we will associate the following HD-vector:

m = top−left⊗ (shape⊗ square ⊕ color ⊗magenta)

⊕ top−right⊗ (shape⊗ square ⊕ color ⊗ green)
(4)

It can be shown that the information stored in the vector m can be retrieved. For example to retrieve
the information about the shape in position "top-left" we can dis-entangle the vector m with the
vector top−left and then with the vector shape. The resulting vector will be much closer to the
vector square than to any of the other three vectors: triangle, circle and cross.
Following the previous example we associated to each image Ij in the dataset an HD-vector mj ,
building the following dataset:

D = {Ij ,mj}3072j=1 (5)

3.1 Querying the knowledge base

The vectors mj just defined contain information about the pictures and can be queried to retrieve some
of the properties of the picture. Querying an HD-vector consists in applying a set of operations in a
specific sequence. In the following we will present the queries we used to train our architecture. The
queries will be presented at first in natural language followed by the corresponding set of operations
in the space of HD-vectors. To do so let’s first define the set Positions:

Positions = {top−left, top−right, bottom−left, bottom−right} (6)

In the following the questions.
Question 1: "Is there a circle in the picture?"∑

pos

cos(circle , shape⊗ pos⊗m) > 0.5, pos ∈ Positions. (7)

Question 2: "Is there the color green?"∑
pos

cos(green , color ⊗ pos⊗m) > 0.5, pos ∈ Positions. (8)

Question 3: "Is there a magenta triangle?"∑
pos

cos(magenta , color⊗pos⊗m)·cos(triangle , shape⊗pos⊗m) > 0.25, pos ∈ Positions.

(9)

Question 4: "Is there a square in the bottom-left?":

cos(square , shape⊗ bottom−left⊗m) > 0.5. (10)

3

Question 5: "Is the shape in position top-left the same as the one in top-right?":
cos(shape⊗ top−left⊗m, shape⊗ top−right⊗m) > 0.5. (11)

Each of the previous questions has a positive or a negative answer for each of the pictures in the
dataset. So to each picture Ij we will associate five numbers, namely qj1, qj2, qj3, qj4, qj5. The number
qj1 will be equal to 1 if the answer of Question 1 for the j−th picture is true, otherwise q1j will be 0.
We will use these values during the training of the network as target values. So let’s add these values
to the dataset D previously defined:

D = {Ij ,mj , qj1, q
j
2, q

j
3, q

j
4, q

j
5}3072j=1 (12)

4 Training and Testing

We trained a FFW network with two hidden layers of 200 rectified linear units each. The network
was asked to return as output the HD-vector describing the picture. For this reason the output of the
network was a layer of 1000 nodes with hyperbolic tangent as activation function.
The network was trained in order to associate to each input image an HD-vector such that when the
vector was queried, it returned the correct information about the image. For this reason the error
function that we minimized during the training was composed of a term for each of the questions.
In particular for each equation (7, 8, 9, 10, 11) we took the left side of the equation and computed
its value for each image in the dataset by substituting in the equation the term m with the output
of the network net(Ij) (here net is the function implemented by the network). The result of the
computation was forced to be closer to 1 if the answer to the question for the picture Ij was true,
otherwise the result of the computation was forced to be closer to 0. Let’s consider for example
Question 1 and its equation (eq. 7). Here we defined the error term E1 as:

E1 =
∑
j

(∑
pos

cos
(
circle , shape⊗ pos⊗ net(Ij)

)
− qj1

)2

(13)

In the same way we defined an error term for each of the questions in the previous paragraph. We
called E2, E3, E4, E5 the error terms relative to Question 2, Question 3, Question 4 and Question 5.
The error function that we minimized during the training was the following sum:

E =

5∑
i=1

Ei (14)

We developed two kinds of test for the network. In a first test the network was asked to answer the
questions used during the training, but on new data. In the second test the network was asked to
answer new questions that were not used in the training. In the first test the network was tested on
30% of the dataset, on data that were not used during the training. For each example in the test set we
evaluated the answer to each of the questions by substituting the output of the net net(Ij) with the
vector m in the equation representing the question, assuming the answer to be true if the inequality
was respected, false otherwise. The network reached an accuracy of 100% on all the questions. On
the second experiment we tested the network on new questions. In particular we asked questions
similar to question 7, but relative to the three other shapes: "square", "triangle" and "cross". In these
cases we obtained accuracy values of 72%, 69% and 60%. Interestingly the worst performance was
obtained on the "cross" shape, which was the shape that was never used in any of the questions in the
training.

5 Conclusions

In this paper we presented an architecture for VQA that uses HD-computing to encode the knowledge
base and evaluating a query against it. This choice makes the system easy to train in an end-to-end
fashion. The system proved to work very well and to generalize well on a simple task. Further
experiments are needed to test the architecture on more challenging and natural benchmarks.

Acknowledgments

This work was funded by ERC Advanced Grant Number 323674 “FEEL” and ERC Proof of Concept
Grant Number 692765 "FeelSpeech".

4

References
[1] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zit-

nick, and Devi Parikh. Vqa: Visual question answering. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2425–2433, 2015.

[2] Haoyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang, Lei Wang, and Wei Xu. Are you talking
to a machine? dataset and methods for multilingual image question. In Advances in Neural
Information Processing Systems, pages 2296–2304, 2015.

[3] Aditya Joshi, Johan Halseth, and Pentti Kanerva. Language recognition using random indexing.
arXiv preprint arXiv:1412.7026, 2014.

[4] Pentti Kanerva. Hyperdimensional computing: An introduction to computing in distributed
representation with high-dimensional random vectors. Cognitive Computation, 1(2):139–159,
2009.

[5] Jayant Krishnamurthy and Thomas Kollar. Jointly learning to parse and perceive: Connecting
natural language to the physical world. Transactions of the Association for Computational
Linguistics, 1:193–206, 2013.

[6] Abbas Rahimi, Pentti Kanerva, and Jan M. Rabaey. A robust and energy-efficient classifier
using brain-inspired hyperdimensional computing. In Proceedings of the 2016 International
Symposium on Low Power Electronics and Design. ACM, 2016.

[7] Mengye Ren, Ryan Kiros, and Richard Zemel. Image question answering: A visual semantic
embedding model and a new dataset. Proc. Advances in Neural Inf. Process. Syst, 1(2):5, 2015.

[8] Licheng Yu, Eunbyung Park, Alexander C Berg, and Tamara L Berg. Visual madlibs: Fill in the
blank description generation and question answering. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2461–2469, 2015.

5

	Introduction
	Dataset
	HD representation of the knowledge base
	Querying the knowledge base

	Training and Testing
	Conclusions

