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Abstract: Philipona O’Regan recently proposed a linear model of surface reflectance as
it is sensed by the human eyes. In their model, the three dimensional cone response to
reflected light is accurately approximated by a linear transformation of the three dimensional
response to illumination. The geometrical properties of this linear transformation, such as
singularity, correlate with psychophysical results on focal colors and unique hues. Later,
Vazquez-Corral et al. built a bridge between Philipona & O’Regan’s model and von Kries-
like approaches to color constancy in computer vision by showing that the linear operators
could be diagonalized in a common basis. However both of these studies required specifying
a particular dataset of illuminants. We will show in this paper that it is possible to compute
adequate linear operators and a common basis for diagonalization without specifying any
particular set of illuminants, thus enhancing their generalizability to illuminant changes,
while maintaining correlations with features of the human color vision. Further analysis of
the characteristics of singularity in reflection properties will also be presented.
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0.1 Introduction

In physics, the spectrum of a natural light can be considered as composed of an infinite
number of non-interactive monochromatic lights. In that sense, a light spectrum can be seen
as a vector of infinite dimension, each dimension corresponding to a wavelength λ . Each
component of the vector specifies the spectral power of the light at this wavelength E(λ ).
In this framework, surfaces transform the incident light into the reflected light through a
multiplicative coefficient 0≤ S(λ )≤ 1. This transformation is commonly called the surface
reflectance function. However, daylight is only made available to the human nervous system
through transformation of electromagnetic information into chemical information operated
by the photopigments present in the three types of human cones, namely L, M and S (for
long, medium and short wavelength). Such transfer of information can be described as a
projection of a space of infinite dimension into a space of only three dimensions, each di-
mension corresponding to one type of cone (Koenderink and Doorn 2003). The available
information (AI from now on) about light, available to the human nervous system at the
retinal level, is thus a three dimensional vector. Since the L and M cone sensitivity func-
tions are highly overlapping, the L and M components of this space are highly interacting
as well. (Philipona and O’Regan 2006) (PO from now on) studied the analogue of surface
reflectance in this 3D space i.e. the transformation of the incident light into the reflected light
as sensed by human eyes. They showed that this transformation can be well modeled by a
linear operator, and hypothesized that this transformation is independent of the illuminant.
They empirically confirmed this independence by statistically computing the linear operator
using a set of natural illuminants. However, the fact that they specied a particular set of illu-
minants only guarantees partial independence. This limits the robustness of the model with
respect to other illuminants.

In the first and second parts of this article, we will introduce PO’s model in detail and
present a novel computational/statistical approach to the model that is completely illuminant-
independent. Quantitative comparison with PO will be discussed.

A third part of the article concerns a development of PO’s approach by (Vazquez-Corral
et al. 2012) (V-C from now on). These authors presented a development of PO in which
they were able to empirically show that a global change of basis transform could be used to
almost jointly diagonalize all the linear operators, represented by matrices, of PO’s model.
This transformation, through a linear combination, transforms human cone sensitivities into
new ones which overlap less strongly, and are therefore less correlated. This procedure is
very similar to spectral sharpening (Finlayson, Drew, and Funt 1994) and builds a bridge
between PO’s model and classic studies on color constancy.

Color constancy is a major feature of human color perception. It refers to the capacity of
humans to naturally correct the effect of the illuminant on the light reflected by a surface.
Since illuminant spectra, from natural to artificial, from morning to evening daylights, dis-
play a large range of shapes and amplitudes, the AI strongly varies with the illuminant change
(Wyszecki and Stiles 1982). If human color perception solely depended on the AI, then the
color appearance of an object would vary greatly with the illuminant as well. The fact that it
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does not, indicates that the human visual system succeeds, partially at least, in discounting
the effect of the illuminant (Brainard, Kraft, and Longere 2003).

Color constancy has been extensively studied in human as well as in computer vision, and
remains the subject of debate (Logvinenko et al. 2015). Many theories and approaches to
color constancy attempt to estimate the illuminant from the visual scene (Land 1964; Van
De Weijer and Gevers 2005; Provenzi et al. 2008), and then discount it from the AI. In this
way they are able to extract intrinsic properties of the reflecting object (Wandel 1995), or to
reconstruct the AI as if the object were illuminated by a fixed canonical light (Forsyth 1990).
In computer vision, classic algorithms to achieve color constancy independently adjust the
components of the AI (Von Kries 1902; Brill and West 1981; Land and McCann 1971).
While this approximation is justified when the photoreceptor sensitivities can be considered
disjoint, it fails when this is not so (Land 1983), as is the case for the L and M cones. Human
L and M cone sensitivity functions do indeed overlap strongly. The L and M cone responses
are thus highly correlated and cannot be considered independent. (Land 1983) suggested, in
the general case of non-disjoint photoreceptor sensitivities, the use of a fixed linear combi-
nation of the photoreceptor functions in order to obtain new photoreceptor responses which
are minimally correlated. (Finlayson, Drew, and Funt 1994) later applied this idea to hu-
man vision through their spectral sharpening approach. Psychophysical studies support the
hypothesis that a linear combination of cone sensitivities is performed by the human visual
system (for a review, see (Foster 1984)).

V-C’s computation of a global sharpening transformation, however, also relies on the spec-
ification of a database of illuminants as well as an illuminant of reference. In the third part
of this article, we will start by explaining thoroughly how the link between PO’s model and
classical strategies to achieve color constancy can be made through the definition of a global
diagonalizing matrix. Then, we will use theoretical and computational arguments to jus-
tify the existence of such a surface and illuminant-independent transformation and finish by
proposing a new method to compute this transformation.

A fourth part of the article concerns human color perception. Since color is naturally a
characteristic of surfaces, geometrical properties of the linear operator modeling biological
reflectances are expected to have an influence on human color perception. PO showed that
the singularity of the matrices representing the linear operator may explain some features
of color categorization, such as the particular perceptual status of so-called "focal" colors.
Their computed singularity index correlates with the tendency of surface colors to be given
names across diverse cultures (Berlin and Kay 1991). In this respect, PO’s model contributes
to the color naming and linguistic relativity debate, as to whether language influences color
perception (the relativists’ point of view) or whether color perception influences color nam-
ing (universalist point of view). For a review, see (Jraissati 2014). They were also able to
correlate singularities of reflectances with unique hues i.e. hues that appear unmixed with
others. In this fourth section of the article, we will recall the singularity index as defined
in PO’s paper as well as the correlation between singularities and psychophysical studies on
focal colors and unique hues. We will then show that singularities of the matrices computed
using our new illuminant-independent method, and additionally using a global change of ba-
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sis transformation, demonstrate the same correlations as PO. We will also detail the relation
between singularities and some characteristics observed in the categorization of color such
as lightness and saturation.

0.2 Philipona and O’Regan’s model

PO studied the analogue of surface reflectances in the three dimensional space engendered by
human sensors i.e. the transformation of the incident light into the reflected light as sensed by
human eyes. They showed that this transformation can be well modeled by a linear operator,
as described in the following section.

0.2.1 Biological analogy of a surface reflectance

Consider a surface S illuminated by a light with spectral power distribution E(λ ), λ ∈ Λ =
[400,700]nm, Λ being the visual spectrum. Let RL(λ ), RM(λ ), RS(λ ) denote the absorption
rate at each wavelength λ by photopigments present in the L,M,S human photoreceptors.
The information accessible to the human nervous system tahnks to the cones phototransduc-
tion can be expressed by u(E) = (uL(E),uM(E),uS(E))t , where:

ui(E) =
∫

Λ

Ri(λ )E(λ )dλ , i = L,M,S. (1)

If we denote with S(λ ) the reflectance function of the surface S, we can describe the acces-
sible information about the light reflected by S as vS(E) = (vSL(E),v

S
M(E),vSS)(E))

t , with:

vSi (E) =
∫

Λ

Ri(λ )E(λ )S(λ )dλ , i = L,M,S, (2)

we stress that this equation holds true only if there is no exchange of energy between dif-
ferent wavelengths (e.g. it does not hold for fluorescent surfaces). PO hypothesized that the
transformation of u(E) into vS(E) is linear i.e.:

vS(E) = ASu(E), (3)

where AS : R3 7→ R3 is a linear operator that can be represented by a 3×3 matrix and which
should only depend on the surface S and not on the illuminant E. We interpret AS as the bi-
ological analogue of the physical reflectance of a surface, since it is the operator responsible
for the transformation by a surface of the incident light into the reflected light, as sensed by
the photoreceptors. We will thus call AS the reflectance matrix (RM from now on).

The assumption of the existence of such a linear operator is not trivial. PO used statistical
tools in order to verify it: they computed the empirical variance of the residuals η = vS(E)−
ASu(E), where AS is obtained by linear regression of vS onto u over a set of natural and
simulated daylight illuminants (Philipona and O’Regan 2006). The percentage of variance
accounted by the residuals for their set of surfaces (over 1600 Munsell chips and 1800 natural
surfaces) are surprisingly low, with mean values lower than 0.5%, which shows the validity
of the the model and the linear hypothesis.
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We notice that, with this method, the matrix AS depends on the dataset of illuminants used
to compute it. In Section 0.3 we will discuss in greater detail this dependence and present
a novel method for the computation of the RMs that allows complete independence with
respect to the illuminant.

0.2.2 Diagonalisation of the reflectance matrix and computation of the virtual basis

PO showed that for every surface of their database, the RM AS can either be exactly diag-
onalized or almost diagonalized with three distinct real eigenvalues. In other words, there
exists an invertible matrix T S, which depends on the surface S, such that:

vS(E) =
(

T S
)−1

DST Su(E), (4)

where DS is a diagonal 3×3 matrix. T S is then the linear operator : R3→R3 responsible for
the change of basis where AS is diagonal. This basis is given by the eigenvectors of AS.

Equation (4) can be rewritten as:

T SvS(E) = DST Su(E)
ṽS(E) = DSũS(E),

(5)

where ũ(E) and ṽS(E) are vectors in the new basis obtained by applying the operator T S.
Note that, since T S depends on the surface S, so does ũS(E).

By linearity and recalling Eq. (1), we can write T Sui(E) =
∫

Λ ∑ j T S
i jR j(λ )E(λ )dλ , for

every i, j = L,M,S. If we define R̃i = ∑
j

T S
i jR j(λ ), we find:

ũSi (E) =
∫

Λ

R̃i(λ )E(λ )dλ , i = L,M,S, (6)

and likewise for ṽSi (E).

V-C (Vazquez-Corral et al. 2012) have interpreted R̃i as the absorption rate at each wave-
length λ of virtual photopigments present in virtual photoreceptors. For this reason, the
basis in which the RM is diagonal is called the virtual basis, denoted by L̃M̃S̃S. The diag-
onality of the RM implies that the components of ũS(E) do not mutually interact with each
other when they are reflected by the surface S, and are simply individually scaled by the
associated eigenvalues. In other words, the absorption rate curves of the virtual photopig-
ments are less overlapping than the real ones, which is why they are called sharpened by
finlayson1994spectral and V-C.

Then, by definition of the virtual basis we have ṽSi (E) = rSi ũSi (E), i = L̃,M̃, S̃, which is
equivalent to:

rSi =
ṽSi (E)
ũSi (E)

. (7)

rSL̃,r
S
M̃,rSS̃ can thus be simply interpreted as three independent reflection coefficients in each

of the three virtual channels.
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0.3 Analysis of the independence of Philipona & O’Regan linear hy-
pothesis with respect to the illuminant.

PO statistically computed the RM as the transformation of u(E) into vS(E). Doing so, their
approach inherently relies on the specification of a database of illuminants, moreover natural
in their case. As a consequence, the computed RM is only partially, instead of completely
(cf Eq. (3)), illuminant-independent, and does not directly refer to the action of a surface
on light defined in the three dimensional space given by human photoreceptors, whatever
the illuminant may be. Computationally speaking, such a RM cannot accurately apply to
an illuminant E having little similarity with illuminants in the database used for the linear
regression. In this Section, we will discuss a procedure to compute the matrices AS without
resorting to any particular database of illuminants. We will see that the technique we propose
is a good trade-off between robustness with respect to illuminant changes and consistency of
the matrices AS with the linear model expressed by Eq. (3).

0.3.1 A novel approach to compute the RMs independently with respect to the illumi-
nant

Let AS
i j, j = L,M,S, denote the components of AS. Then, if the linear hypothesis of PO holds

true, we can easily explicitly write Eq. (3) in components as follows:

vSi (E) =
∫

Λ

E(λ )∑
j

AS
i jR j(λ )dλ , (8)

which, thanks to Eq. (2), can be rewritten :

∫
Λ

E(λ )

(
S(λ )Ri(λ )−∑

j
AS

i jR j(λ )

)
dλ = 0. (9)

The other assumption of PO is that the RM should be independent of the illuminant, i.e. Eq.
(9) must be true for any E(λ ). Thanks to the Fundamental Lemma of Calculus of Variations
(Gelfand, Silverman, et al. 2000), it follows that:

S(λ )Ri(λ )−∑
j

AS
i jR j(λ ) = 0, ∀λ ∈ Λ. (10)

Thanks to Eq. (10), we can avoid performing a linear regression over a specified database of
illuminants as in PO’s method, because it can now be performed over Λ. We will call this
approach the Illuminant Independent (II) approach.

0.3.2 Validity of the illuminant-independence of the linear hypothesis

In our calculations we used the same databases as PO did for natural illuminants (Romero,
Garcıa-Beltrán, and Hernández-Andrés 1997; Judd et al. 1964; Chiao, Cronin, and Osorio
2000) and for Munsell chips (Parkkinen, Hallikainen, and Jaaskelainen 1989), the latter made
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available by the University of Joensuu (http://spectral.joensuu.fi/). However, the database of
natural surfaces that we used was taken from (Westland, Shaw, and Owens 2000), Joensuu
and Trieste Universities. For cone sensitivities, we used the 2◦ Stockman & Sharp cone
fundamentals (Stockman and Sharpe 2000) as in (Witzel, Cinotti, and O’Regan 2015) instead
of the 10◦ Stiles & Burch (Stiles and Burch 1959) or the Smith & Pokorny (Smith and
Pokorny 1975) color matching functions used in PO’s and V-C’s papers respectively. The
reason for our choice is simply that Stockman & Sharp cone fundamentals directly refer to
the sensitivity of human photoreceptors. In any case, the results are similar for all of the
sensor functions chosen among those three.

Similarly to PO (Philipona and O’Regan 2006), we checked the validity of the linear and
illuminant-independent hypothesis by computing the empirical variance of the residual η =
y− ŷ, where y is the known quantity that the linear model tries to approximate and ŷ is the
approximated value obtained with the model. However, since we want the model to satisfy
both Eq. (3) and Eq. (10), we considered the two kind of residuals defined in the following
table:

Residual y ŷ
η1 S(λ ) ·R(λ ) ASR(λ )

η2 vS(E) ASu(E),

where R(λ ) = (RL,RM,RS)(λ ).

For further clarification, we used the exponents PO and II to differentiate the cases where the
RMs have been computed with PO’s or the II approach, respectively.

We will denote with VAk
i the percentage of variance of data accounted for by the model, i.e.

VAk
i = 1−mean

L,M,S

(
var(ηk

i )

var(yi)

)
, i = 1,2, k = PO, II. (11)

Figure 1 and Table 1 summarize the results obtained with the II approach. In both graphs of
Figure 1, the full and dashed lines represent the average and median value of VAk

i , respec-
tively. The graph on the left refers to VAII

1 , while on the right we show that of VAII
2 .

The average values for the two graphs are 97% for VAII
1 and 99.7% for VAII

1 . However, it is
important to stress that the minimum attained by VAII

1 is 50 %, while that of VAII
2 is 92%.

The results for VAII
1 show that, even though the linear and illuminant-independent hypothesis

hold true for the large majority of the reflectance functions considered, they do not for all of
them. It is especially true for natural surfaces. However, the model still allows a very good
approximation of the information about the reflected light vS(E), as shown by the results
for VAII

2 . Examples of functions less accurately modeled by the II hypothesis are shown in
Figure 2a. For comparison, we plotted in Figure 2b the 20 reflectance functions giving the
best results. The dashed lines are the 2◦ Stockman-Sharp cone fundamentals. One pattern
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(a) (b)

Figure 1. a) VAII
1 . b): VAII

2 , for their definition, see (11).

we can see when comparing these figures is the presence of high picks in the reflectance
curves giving a low VAII

1 while the reflectance curves giving a high VAII
1 are almost constant

over the visual spectrum (achromatic surfaces). And indeed, the ratio between the maximum
of one reflectance curve and its minimum has a correlation coefficient of around .. with the
errors in each case. In addition, it can be stressed from figure 2 that all of the reflectance
curves leading to a low VAII

1 have a peak either around the beginning and the end of the
visual spectrum i.e. reflectance functions of red, purple or blue surfaces. These two parts
of the spectrum correspond to intervals where only one of the cone fundamentals is partic-
ularly solicited by the reflected light, however not uniformly along its whole support due to
the presence of a high peak in S(λ ). As a consequence, no linear combination of the two
others cone sensitivities can be of influence and the linear model fails to give an accurate
approximation.

For further illustration and a more detailed look at this limit of the linear hypothesis, Figure
3 shows an instance of these reflectance functions and its action on the S and L cone sensi-
tivities. The dotted line corresponds to the reflectance curve, the full lines correspond to the
two products S(λ )Ri(λ ), i = S,L while the dashed lines are the results given by the linear
regression as the most suited linear combinations of the cone response to fit the full lines.
It appears clearly, especially in the case of the L-cone, how the model fails to give a good
approximation. However, the figure also illustrates why, even in this case, VAII

2 can still be
satisfactory: due to a property of the linear regression, the surfaces under the dashed and full
lines are equivalent. Therefore, so are their integrals. Natural illuminant spectra being broad
band and rather smooth on Λ (Romero, Garcıa-Beltrán, and Hernández-Andrés 1997), the
difference between the two terms of Eq. (9) compensate each other under the integral and
give similar values. This reasoning holds obviously only in the case of smooth illuminant
spectra such as the natural ones, and not if we consider monochromatic illuminants for ex-
ample. This is illustrated by the cyan vertical line in Figure 3. While the L-component of
vS(E) is obviously non zero (product of the vertical line with the full blue curve), the model
gives a null value (product of the vertical line with the dashed blue curve) and thus fails to
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(a)

(b)

Figure 2. a Reflectance curves giving a low VAII
1 . b Reflectance curves giving a high VAII

1 .
Dashed curves are the Stockman & Sharp cone fundamentals.

give a correct approximation.

In order to correlate some general properties of surface reflectances with their perceptual
characteristics and the limits of the linear and illuminant-independent hypothesis, we con-
sidered the set of 1600 Munsell chips organized following the Munsell color system. This
system, first proposed by munsell1912pigment, is a standard color space widely used in col-
orimetry and for psychophysical studies representing color with cylindrical coordinates, in
three independent and perceptually uniform dimensions: hue, value and chroma. The value,
or lightness, is the vertical axis, ranging from 0 (black) to 10 (white), and is directly related
to the amount of light transmitted by the colored surface. Originally, and as a first approx-
imation, the value is proportional to the square toot of the luminance (Malacara 2011). The
hue of the color is the polar angle and is divided into 10 main categories: red (RR or R),
yellow-red (YR) yellow (YY or Y), green-yellow (GY), yellow-red (YR), green (GG or G),
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Figure 3. Case of the reflectance functions showing the lowest VAII
1 .

Figure 4. Accuracy of the II appraoch with respect to Munsell hue, value and chroma.

blue-green (BG), blue (BB or B), purple-blue (PB), purple (PP or P) and red-purple (RP).
Each of the main categories are divided into 4 subcategories: 2.5, 5, 7.5 and 10. Chroma, or
color strength, or saturation, is given by the distance to the value axis. It is divided into 8
values, from 2 to 16 by steps of 2. Chroma accounts for the "purity" of a hue, purity being
its amount of visual difference from a grey of the same value. The lower the chroma the less
pure the color. A particularity of the Munsell color system worth pointing out is its irreg-
ular volume: neither spherical nor rectangular, the highest saturations that can be obtained
depend on the value and the hue of the particular chips.

Figure 4 displays the dependence of the linear and illuminant-independant hypothesis on hue,
value and chroma. The vertical axis represents the variance accounted for by the residuals
1−VAII

1 (see Eq. (11)). We can see on the left plot that, even though at first sight the
performance of the linear regression is poorly correlated with the hue of the surface, it still
confirms the previous observation: that the approximation is less accurate for some red, blue
and purple surfaces. The center plot shows that value may have some influence as well. The
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VAII
1 VAII

2 VAPO
2

mean median min mean median min mean median min
natural 96.57 97.95 50.25 99.70 99.96 91.93 99.94 99.97 98.83

fluorescent " ” " 99.45 99.75 87.23 98.69 99.45 65.53
monochromatic " " " 96.33 97.83 37.72 91.68 96.00 -2.30

Table 1. VA values in the case of natural, florescent and almost-monochromatic illuminants.
See text for further explanations.

most striking dependence however is with chroma, with a correlation of 0.78.

The value of a Munsell chip is by definition only dependent on the amount of light trans-
mitted by the surface. In other words, two colored surfaces of the Munsell system, different
only in Munsell value by a factor k, will have at first approximation the same aspect, homo-
geneously scaled by a scalar multiplicative factor C(k) that depends only on k (Cf figure 5a).
Thus, if we denote Sh,v,c(λ ) the reflectance function of a Munsell chip of hue h, value v and
chroma c, we can write:

Sh,kv,c(λ ) =C(k)Sh,v,c(λ ). (12)

Since the multilinear regression of Eq. (10) fits the product of the reflectance function with
the cone sensitivities via a linear combination of the three cone sensitivity functions, any
set of reflectances, different only by a multiplicative constant will therefore allow the same
fitting accuracy. This is the reason why the munsell value is of poor influence in the accuracy
of the linear and independent approximation.

Chroma, on the other hand, deforms in-homogeneously the reflectance functions as seen
in figure 5b) by enhancing the contrast in reflectance between wavelength. The higher the
chroma, the further we get from an achromatic surface reflectance curve. Thus, chroma in-
homogeneously deforms the S(λ )R(λ ) term of Eq.(3) and makes it more difficult to linearly
approximate.

Thus, the relation between the incident and the reflected light as sensed by humans cannot be
considered both linear and illuminant-independent for every surface, especially for high sat-
urated red, blue and purple surfaces. Nonetheless, even for these surfaces, the computed RM
allows a fairly accurate approximation of vS(E) when E is a natural illuminant, as confirmed
by the values of VAII

2 .

0.3.3 Quantitative comparison between PO’s and II approaches

Looking at Table 1 and comparing the VAII
2 and VAPO

2 obtained for natural illuminants, one
could argue that the AS computed with PO’s approach allows far better results than with the
II approach. But the reason for this is that since the regression matrices AS calculated with
PO’s strategy are computed with respect to a particular set of illuminants, natural in this
case, they are optimally adapted to it, while those computed with the II approach are not.
Figure shows the action of a reflectance function, similar to the one discussed in the previous
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(a)

(b)

Figure 5. Plots of surface reflectances fo a given hue (RR) a) varying only in value (chroma
= 6) and b) varying only in chroma (value = 4).

section, on the L and S cone sensitivities, as well as the approximation given by the model
using PO’s approach to compute the corresponding RM.

Thus, we thought it would be interesting to test the robustness of the two approaches with
respect to illuminant change i.e the consistency between the AS matrices and the linear model
in Eq. (3) when a drastic change of E occurs. In order to test this, we considered two other
illuminant datasets provided by Witzel et al in (Witzel, Cinotti, and O’Regan 2015). The
first one was of fluorescent illuminants and the second was of almost-monochromatic visual
lights. Both types of illuminants are very different from the natural ones.

In Table 1, we show the VA values with the II and PO approaches for natural, florescent and
almost-monochromatic illuminants. The key point is that all values of VAPO

2 were calculated
with the RMs computed over the dataset of natural illuminants and applied to the fluorescent
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and almost-monochromatic conditions.

We notice that PO’s matrices become less and less adapted to satisfy the linear model when
we pass from the natural illuminant dataset to the florescent and the almost-monochromatic
ones, with VAPO

2 average values of 99,9 to 98.7 to 91.7 respectively. In particular, we observe
the presence of a negative value for VAPO

2 . Instead, the AS matrices computed with the
II model remain, in terms of mean, median and minimal value, a better approximation than
PO’s for the florescent and almost-monochromatic sets. Once computed, the RMs found with
the II approach are thus more reliable than those found with PO’s in terms of generalisability
to other illuminants. In this way, they more directly refer to the action of a surface in the three
dimensional space given by the human photoreceptors, independently of the illuminant.

0.4 A theoretical and computational discussion of PO’s model in the
context of computer vision

In their article, PO pointed out the possible link of the model with spectral sharpening (Fin-
layson, Drew, and Funt 1994). They argued that this link is valid if the matrices AS can
be diagonalized using a unique transformation that is independent of the surface S. V-C
later computed a global transformation which role is very similar to jointly diagonalizing
all matrices, however still relying on the same database of illuminant as PO, and in addition
relying on a reference illuminant, the CIE standard illuminant D65 in the present case. They
also limited their database of surfaces to the 320 colored munsell chips used in the WCS
studies (Berlin and Kay 1991). For the sake of clarity, we will start this section by describing
thoroughly the bridge between PO’s model and computer vision. Then, we will show that
the existence of a S-independent diagonalizing transformation is a theoretical consequence
of PO’s model applied to multiple surfaces. Finally, using the large set of RM computed
thanks to the II approach, we will present a novel strategy to compute this transformation
without resorting to any standard illuminant or any particular illuminant database thanks to
a gradient descent.

0.4.1 Bridge between PO’s model and computer vision

Suppose that we have a visual scene illuminated by only one spatially homogeneous light
source E(λ ), and consider an RGB camera with spectral sensitivity functions picked in the
low, medium and high visible wavelengths, usually indicated with R, G and B, respectively.
We denote the spectral sensitivity functions as ρc : Λ→ R+, c ∈ {R,G,B}. The analysis
performed in (Jiang et al. 2013) showed that supp(ρc), the supports of the functions ρc, are
very similar and weakly overlapping compared to the spectral sensitivity functions of retinal
cones.

In the Lambertian digital image formation model, see e.g. (Gijsenij, Gevers, and Van De
Weijer 2011), the intensity vc(x,E) of a pixel x in the chromatic channel c is represented as
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follows:
vc(x,E) =

∫
Λ

ρc(x,λ )S(x,λ )E(λ )dλ . (13)

If we consider the supports supp(ρc) as not overlapping and the reflectance functions S(x,λ )
as constant with respect to λ in each subset supp(ρc), i.e. S(x,λ )≡ Sc(x) for all λ ∈ supp(ρc)
and c ∈ {R,G,B}, then vc(x,E) can be re-written as:(

vR(x,E)
vG(x,E)
vB(x,E)

)
=

(
SR(x) 0 0

0 SG(x) 0
0 0 SB(x)

)(
uR(E)
uG(E)
uB(E)

)
. (14)

Notice that the simultaneous dependence on x and E of the left-hand side of the equation is
separated into two multiplicative components, one being the diagonal matrix of elements Sc
which depends on x, and the other being the vector components uc which depend on E.

The von Kries diagonal transformation (Von Kries 1902), used as a basis in several ap-
proaches to color constancy, see e.g. (West and Brill 1982; Forsyth 1990), is described by
the following formula:(

SR(x)
SG(x)
SB(x)

)
=

(
1/uR(E) 0 0

0 1/uG(E) 0
0 0 1/uB(E)

)(
vR(x)
vG(x)
vB(x)

)
. (15)

We stress that the von Kries matrix transformation is diagonal thanks to the diagonal nature
of Eq. (14). Moreover, its independence with respect to the pixel position x is a consequence
of the separability property of Eq. (14).

We would like to translate what we have just stated into the terms of PO’s model. First of
all, the equivalent of Eq. (14) in PO’s setting is Eq. (3). The matrices appearing in the
two formulae depend only on surface properties. However AS is not diagonal, thus it is not
possible to write a von Kries-like transformation to obtain information on the reflectance.

Notice however, that in the virtual basis expressed by Eq. (5) the RM is diagonal. If we write
Eq. (5) in terms of components we find:(

ṽSL̃(E)
ṽSM̃(E)
ṽSS̃(E)

)
=

(
rSL̃ 0 0
0 rSM̃ 0
0 0 rSS̃

)(
ũSL̃(E)
ũSM̃(E)
ũSS̃(E)

)
. (16)

By direct computation, the previous formula can be re-written as:(
rSL̃
rSM̃
rSS̃

)
=

(
1/ũSL̃(E) 0 0

0 1/ũSM̃(E) 0
0 0 1/ũSS̃(E)

)(
vSL̃(E)
vSM̃(E)
vSS̃(E)

)
. (17)

If we look at Eqs. (15) and (17) we see that in the latter the diagonal matrix depends on
the surface S, as a consequence of the dependence of ũS = T Su on S. This argument shows
that, if we want to be able to apply a von Kries-like transformation in PO’s framework, the
transformation T S to the virtual basis must be independent of S.

In the following subsections we will discuss this important issue in theoretical and computa-
tional terms.
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0.4.2 Theoretical and empirical arguments for the existence of a unique virtual basis
in the context of PO’s framework

The existence of a global change of basis transform can be theoretically derived from Eq. (1),
(2) and (3), the very roots of PO’s model. First of all, let us recall an important result of linear
algebra: a set of matrices is simultaneously diagonalizable if and only if they commute. In
particular, in PO’s setting, this means that two matrices AS1 and AS2 , relative to two arbitrary
surfaces S1 and S2, can be diagonalized in the same basis if and only if they commute, i.e.
AS1AS2 = AS2AS1 . We shall now give an argument to show that the commutativity of these
matrices must indeed hold true. First of all, notice that, from a physical point of view, light
reflected by a surface of spectral reflectance S(λ ) is indistinguishable from light emitted by
a source whose power distribution is E(λ )S(λ ). Considering Eqs. (1) and (2), this can be
translated into the following expression:

vSi (E) =
∫

Λ

Ri(λ ) [S(λ )E(λ )]dλ , i = L,M,S

= ui(S ·E).
(18)

Thus, if we consider the situation of a ray of light reflected by a surface S1 onto another
surface S2, then due to the definition of reflectance the accessible information about the light
reflected in this process is:

ui(S1S2 ·E) =
∫

Λ

Ri(λ ) [S1(λ )S2(λ )E(λ )]dλ

=
∫

Λ

Ri(λ ) [S2(λ )S1(λ )E(λ )]dλ

= ui(S2S1 ·E),

(19)

which shows that the role of S1 and S2 can be inverted in the process described above.

Notice now that we can write in its vector form:

u(S2S1 ·E) = vS2(S1 ·E) = AS2

∫
Λ

R(λ )S1(λ )E(λ )dλ

= AS2AS1u(E).
(20)

Similarly, if we compute u(S1S2 ·E) we obtain AS1AS2u(E). Thanks to Eq. (19), we have
AS1AS2u(E) = AS2AS1u(E) for all pairs of surfaces S1 and S2, hence the commutativity of
the RM matrices and the existence of a global change of basis transform. Note that this is
only true theoretically if and only if Eq.(3) holds exactly. However, as seen in the previous
section, it is not the case. We thus calculated the commutativity of our set of 2340 matrices
to test whether with the matrices computed with the II approach, the existence of a global
change of basis is to be expected. As showed in appendix 0.8.2, if we define the commutator
Ci j as:

Ci j = ASiAS j −AS jASi, (21)

we can define a criterion Ri j for the relative commutativity:

Ri j =

∥∥Ci j
∥∥

2
∥∥AS

i

∥∥∥∥∥AS
j

∥∥∥ ≤ 1, ∀i, j ∈ {1,2, ...,2340} (22)
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Figure 6. Histogram of the relative commutativity for our set of matrices with mean (full
line) and median (dashed line) values.

We thus plotted the left part of equation 22 in figure 6. We found that in most cases the
commutators are indeed very small, with a mean and median of around 0.014 and 0.01
respectively. It means indeed that for the major part of the matrices, choosing a global change
of basis transformation would expectedly do little difference in the diagonal coefficients of
the resulting matrix than if an optimal change of basis transformation was used for each.
Even though this statement has not yet been mathematically proven for real valued non-
symmetric matrices, as the RM, it has been proven for other cases (O’Meara and Vinsonhaler
2006) and empirically verified (Bunse-Gerstner, Byers, and Mehrmann 1993) (Cardoso and
Souloumiac 1996). However figure 6 shows that for some commutators Ri j is significantly
high, with a value higher than 0.1 i.e. to more than 10% of its superior limit. A threshold
needs yet to be defined in order to characterize whether a commutator is significant or not.

We argued that if Eq. (3) holds perfectly true, then all RM perfectly commute, therefore the
lack of commutativity should be a consequence of the limits of the linear and II hypothesis
of the RM; In order to verify this, we calculated the correlation coefficients between the
variance accounted by the residuals 1−VAII

1 (cf section 0.3.2) and the normalized mean
commutator’s norm obtained for each RM. We found a coefficient of correlation of around
0.7, which clearly assesses the relation between the lack of commutativity and the lack of
accuracy of the linear model.

In any case, the commutativity of our set of matrices, even though very large, allow the
statement of the existence of a global change of basis matrix that nearly diagonalize all RM.
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0.4.3 A novel strategy to find a unique diagonalization matrix in PO’s setting

Now that we have provided an argument for the existence of a unique transformation T able
to jointly almost diagonalize all RM matrices at once, we have to computationally find it.

This problem has already been considered by V-C et al. in (Vazquez-Corral et al. 2012),
where the authors proposed a strategy to find T which, however, once again depends on the
choice of a particular illuminant and on the database that was selected.

Here we are going to describe a new strategy that does not have these limitations.

A commonly used measure for the the joint diagonality of a set of N matrices {Mk}N
k=1

proposed in (Bunse-Gerstner, Byers, and Mehrmann 1993) is the average of the Frobenius
norm of the off-diagonal elements of each matrix, i.e.

JD =
1
N

N

∑
k=1

(
∑
i 6= j

∣∣∣Mk
i j

∣∣∣2)1/2

=
1
N

N

∑
k=1

∥∥∥[Mk−diag(Mk)]i j

∥∥∥
FRO

.

(23)

The larger JD, the less the set of matrices is jointly diagonal.

The goal of the algorithm that we want to propose is thus to find the optimal change of basis
transformation Topt that minimizes JD. Using the notations introduced for PO’s framework
in the case of N surfaces Sk, we can write the optimality condition as follows:

Topt = argmin
T∈R3×3

JD(T )

= argmin
T∈R3×3

1
N

N

∑
k=1

∑
i 6= j

∣∣∣(T−1ASkT )i j

∣∣∣2 . (24)

We stress that the matrices that appear in the previous equation are not symmetric nor self-
adjoint, thus we cannot apply the minimization strategies proposed in (Bunse-Gerstner, By-
ers, and Mehrmann 1993; Cardoso and Souloumiac 1996; Afsari and Krishnaprasad 2004;
Ziehe et al. 2004; Tichavsk and Yeredor 2009) in our context. However, the gradient descent
strategy proposed by (Hori, 1999) (Hori 1999) can be adapted to our framework because it
requires only the non-singularity of matrices.

The gradient of JD is:

∇JD(T ) = 2T
N

∑
k=1

[(
T−1ASk T

)t
,
(

T−1ASk T −diag(T−1ASk T )
)]

, (25)

where [M1,M2] = M1M2−M2M1 is the commutator between matrices, so the discrete gradi-
ent descent equation to find Topt is:

Tn+1 = Tn−αn
∇JD(Tn)

‖∇JD(Tn)‖
, n≥ 0 (26)
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Figure 7. Gradient descent applied on the set of 2340 RMs computed using the II approach.

Stockman & Sharp Smith & Pokorny Stiles & Burch 1.6934 −1.5335 0.0750
−0.8547 2.1269 −0.2243
0.0215 −0.0432 1.0169

  1.7191 −1.5603 0.0666
−0.8836 2.1573 −0.1800
0.0349 −0.0680 1.0128

  1.0388 −0.3447 0.1559
−0.1066 1.0896 −0.1059
0.0043 −0.0137 1.0127


Table 2. Optimal global change of basis matrix found with the gradient descent for the three
kinds of cone sensitivities.

where 0 < αn < 1 is the step dependent weight of the numerical scheme.

The matrix which minimizes the error JD, among the 2340 matrices of our dataset with
columns given by the eigenvectors of

{
ASk
}

, was selected as the initial transformation T0.

The stopping criterion of the numerical scheme is the following: we consider that the algo-
rithm converged when the L1 distance between Tn+1 and Tn is less than ε = 10−3. This value
for ε was chosen empirically on the basis of the numerical values of the matrix elements of
Tn as well as for the efficiency of the algorithm.

In Fig. 7 we show the decreasing behavior of JD(Tn) with respect to n.It can be seen that,
after 6 iterations, the corrections are negligible. Thus, in practice, we can consider the al-
gorithm to be convergent after 6 iterations with a value of JD of 0.00006. This value is
such that, on average, the off-diagonal elements of any matrix account for less than 0.4%
of the sum of the absolute values of all of the matrix elements. In other words, this result
empirically confirms that Topt almost diagonalize all matrices of our dataset.

Table 2 shows the Topt found with the gradient descent for the three kinds of cone sensitivi-
ties.
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0.5 Singularities in reflection properties and link with human color vi-
sion

In a natural environment, color is related to the reflectance properties of an object. There-
fore, the geometrical properties of the RM should account for characteristics of human color
vision.

0.5.1 Singularities in reflection properties

Contrary to the situation in physics where the space of the incident and reflected light has
an infinite dimension (and therefore there are an infinity of reflection coefficients for each
λ ), in the biological case there are only three dimensions and, moreover, when placed in the
virtual basis found by diagonalizing the RM, only three reflection coefficients (cf Eq. (7).
This small number of reflection coefficients allow the presence of a few asymmetries and
singularities.

One kind of singularity is observed in the case where all three coefficients are about equal,
that is to say, when the surface transmits the incident light with a similar amplitude in all three
non-interacting components of the virtual basis. This corresponds to the case of achromatic
surfaces: black when the light is equally poorly transmitted (rSi ' 0), white when it is equally
highly transmitted (rSi ' 1) and gray in the intermediate situation. Another type of singularity
would happen when the surface’s reflection only produce strong variations of the incoming
light along one or two of the axis of the basis. In other words, a singularity would happen if
one or two reflection coefficients rSi would be close to zero. In the first case, one reflection
coefficient would be very large compared to the two others, whereas in the second case
one reflection coefficient would be very small compared to the other two. Like achromatic
surfaces, such singular surfaces are expected to bear a particular perceptual status.

In order to characterize the latter kind of singularities, PO defined a singularity index σS :

σ
S = max

(
σS

1
σmax

1
,

σS
2

σmax
2

)
where σS

1 is the ratio of the maximum reflection coefficient over the second maximum reflec-
tion coefficient for one surface, σS

2 is the ratio of the second maximum reflection coefficient
over the smallest reflection coefficient, and σmax

1 and σmax
2 are the maximum σS

1 and σS
2

values respectively over the entire dataset of surfaces. Maxima of σS
1 correspond to sufaces

that maximally reflect one of the incoming light’s components in the virtual basis compared
to the others two while maxima of σS

2 correspond to surfaces that minimally reflects one of
the incoming light’s components in the virtual basis compared to the other two.

PO compared their computed singularity indexes with (Berlin and Kay 1991) psychophys-
ical results using the same 320 colored munsell chips. They showed that the four chips
with the highest local singularity index were only one chip far from the four chips which
were most often given a name by widely separated human cultures (Fig 8) i.e. according to
berlin1991basic, the four basic universal focal colors "red", "yellow", "green" and "blue".
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This result suggests that the largely cross-culturally spread particular perceptual status of
these four surfaces, as being the prototypes of the four main color categories, and their oc-
currence in being named, may be a direct consequence of these surface reflection properties.
All the more so since witzel2015determines showed how the singularity index is robust with
respect to changes in cone sensitivity functions. Even though the latter observation requires
further investigation to be fully understood, it remains a strong argument in favor of the
universalists point of view regarding the color naming and linguistic relativity debate.

Figure 8. Singularity index computed with PO’s approach on the set of 320 munsell chips of
the WCS.

In addition, psychophysical studies on unique hues mostly rely on stimuli consisting in the
direct presentation to the eyes of a highly spectrally controlled light, rather than natural view-
ing of a colored surface CITE. Even though their framework models surface reflectances as
sensed by human eyes, PO were also able to relate the singularities of the RM with the four
unique hues "red", "yellow", "green" and "blue". They did so by making the small conjecture
that such stimuli are interpreted by the nervous system as being the result of a light reflected
by a colored surface. Thus, it allowed them to transpose the index concerning surface prop-
erties into an index concerning photons caught by human photopigments (for the detailed
transposition procedure, cf. (Philipona and O’Regan 2006)). Their transposed index enabled
consistent predictions of psychophysical studies results on unique hues.

These results show that the properties of the computed RM may be a cause for characteristics
of human color vision. Since we argued in section 0.3.3 that the RM computed with the II
approach were more closely related to the action of a surface in the 3D space of human
photoreceptors than with PO’s, it is of interest to verify that the singularities of such RM
still allow a good match with psychophysical studies. We only considered the link between
singularity index and focal colors because focal colors and unique hues are so strongly related
in PO’s framework that observations on unique hues follow naturally from results on focal
colors.

Figure 10a) shows the singularity index obtained for the set of 320 surfaces of the WCS
studies with the II approach performing a per surface diagonalization. We can see that the
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(a) (b)

Figure 9. Singularity index of the 320 munsell chips computed with a) the II approach b)
Topt .

singularity index still correlates with the WCS results on color naming, with a correlation
coefficient of 0.63. The same can be observed for the index computed using a the single
change of basis Topt , with this time however a correlation coefficient of 0.55. In both cases,
anyway, the predicted prototypes for the four main color categories remain very similar to
the ones predicted by PO and observed in the WCS study.

0.5.2 Analysis of biological reflectance singularities

witzel2015determines extensively studied some characteristics of the singularity index, show-
ing, among other things, that chroma and singularities are well correlated for the set of 320
Munsell chips, with a correlation coefficient of 0.7.

Figure 10a) displays the singularity index according to hues, values and chroma for our
set of 1600 Munsell chips. Small and dark bluish dots corresponds to small values of the
singularity index while large and lighter yellowish dots to high values of the singularity
index. It appears clearly from this figure that chroma and singularities of munsell chips are
very much correlated, while on the other hand value is not. Figure 10b explicitly shows
the dependence of the singularity of Munsell chips on chroma and value. They confirm the
first impressions as well as Witzel et al.’s observations. The correlation between chroma
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and the singularity index is even higher in our case, with a correlation coefficient of 0.74,
while between value and the singularity index the correlation is of -0.1. We find here also an
explanation as to why, even for focal colors there is a disparity in singularity index values:
some hues and values allow a higher range of saturation. YY and RR for instance allow
chroma superior to 10-12, contrary to GG and BB.

This disparity in the influence of value and chroma on the singularity index can be qual-
itatively understood from figure 5. Recalling Eq. 12 we have as a first approximation:
Sh,kv,c(λ ) = C(k)Sh,v,c(λ ), where C is a multiplicative constant that depends on k. Thus in
the framework of PO’s model we can write:

vSh,kv,c(E) =
∫

Λ

R(λ )E(λ )Sh,kv,c(λ )dλ ,

=C(k)
∫

Λ

R(λ )E(λ )Sh,v,c(λ )dλ ,

=C(k)ASh,v,cu(E).

(27)

which is equivalent to saying ASh,kv,c =C(k)ASh,v,c . Thanks to matrix properties, we have

DSh,kv,c =C(k)DSh,v,c . (28)

Since the singularity index only takes into account ratios between elements of the diago-
nal RM, the multiplicative constant C(k) has no influence on the singularity index, which
explains the very little influence of value itself.

On the other hand, we saw in section 0.3.2 that chroma deforms the reflectance functions
non-homogeneously, as seen in figure 5b), by enhancing the contrast in reflectance between
wavelengths. As a consequence, it will enlarge the contrast between reflection coefficients.

Another feature of singularities is their independence with respect to cone proportions on the
retina. Cone proportions can be simply modeled by weights applied on cone sensitivities.
Even though the weights can greatly modify the components of u(E) and vS(E) and change
the components of the RM, they have no repercussion on their eigenvalues once in the virtual
basis. This result is actually a consequence of the nature of the RM, as being a linear operator
of the three dimensional space defined by the human cones. Indeed, applying a weight to
cone sensitivities simply means applying an independent scaling to the components of the
basis on which u(E) and vS(E) are expressed, without modifying the intrinsic properties
of the linear operator. Interestingly, if we think of the relation between singularities of the
RM and unique hues, this result is in accordance with the observations made by (Brainard
et al. 2000) and (Pokorny and Smith 1987; Miyahara et al. 1998). They observed that the
inter-individual differences in cone ratios, and especially for the L and M cones, had no
influence on the perception of unique yellow. This observation further supports the idea that
unique hues may be a consequence of reflection properties of surface reflectances, as they
are sensed by human eyes.

In short, singularities in the biological reflectance properties seem closely linked to charac-
teristics of human color perception, as they may account for the relationship between hue,
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(b)

Figure 10. a) Singularity index according to hue, value and chroma for our set of 1600 Mun-
sell chips. Small and dark bluish dots corresponds to small values of the singularity index
while large and lighter yellowish dots to high values of the singularity index. b) Singularity
index according to chroma and value.
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chroma and the particular perceptual status of colored surfaces. They also correlate with
psychophysical studies on unique hues. On the other hand, singularities do not, or very
poorly, account for the influence of the lightness of a surface in human color perception. In
that aspect, singularities cannot fully account for the capacity of human color perception to
categorize color.

0.6 Conclusion

We have shown in this work that an alternative method to PO’s can be used to compute
the RM AS. This method has the advantage of being fully independent with respect to the
illuminant. It is thus robust to illuminant change, while still allowing satisfactory results in
the approximation of the information available to the eye about the reflected light vS(E). It
also allows the computation, through simple gradient descent, of a global change of basis
transform T which is independent of illuminants, and compatible with classic von Kries-
like approaches to achieve color constancy despite the significant overlap of human cone
sensitivity functions.

Another result we have obtained is to show that singularities of the RM computed with our
approach still correlate with characteristics of human color vision, in particular its ability
to categorize colors, and the independence of unique hues with respect to cone ratios. Fur-
thermore, we showed that singularities accounted for hues and saturation, but were largely
unaffected by variations in surface lightness. They thus cannot fully account for human’s
color categorization.
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0.8 Appendicies

0.8.1 Appendix A: Linear and Illuminant-Independant hypothesis

Let Λ̄ = [λ1,λ2], Λ ⊂ Λ̄, such that E(λ1) = E(λ2) = 0, ∀E(λ ). Every E(λ ) is considered
smooth (continuous is sufficient here). Then According to the fundamental Lemma of Cal-
culus of Variation :∫

Λ̄

dλE(λ )[S(λ )Ri(λ )−∑
j

AS
i jR j(λ )] = 0, ∀λ ∈ Λ̄ (29)

is equivalent to :
S(λ )Ri(λ )−∑

j
AS

i jR j(λ ) = 0, ∀λ ∈ Λ̄ (30)

Now, as Ri(λ ) = 0,∀λ /∈ Λ, i = L,M,S, then equation 30 is equivalent to :

S(λ )Ri(λ )−∑
j

AS
i jR j(λ ) = 0, ∀λ ∈ Λ (31)
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Thus a linear operator AS such that vS(E) = ASu(E), independently on E(λ ) exists if and
only if there exist {AS

i j} such that :

S(λ )Ri(λ ) = ∑
j

AS
i jR j(λ ), i, j = L,M,S, ∀λ ∈ Λ

where {Ai j} are the components of AS.

0.8.2 Appendix B: Relative norm of a commutator

Let A1 and A2 denote two matrices. Their commutator is defined as C12 = A1A2−A2A1. Two
properties of matrix norms are the following:

‖A1 +A2‖ ≤ ‖A1‖+‖A2‖ (32)

and
‖A1A2‖ ≤ ‖A1‖‖A2‖ (33)

We then have :

‖C12‖= ‖A1A2−A2A1‖
≤ ‖A1A2‖+‖A2A1‖
≤ ‖A1‖‖A2‖+‖A2‖‖A1‖
≤ 2‖A1‖‖A2‖

(34)

Which is in turn equivalent to :
‖C12‖

2‖A1| |A2‖
≤ 1.
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