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ABSTRACT

Philipona & O’Regan (2006) [1] recently proposed a linear model
of surface reflectance as it is sensed by the human eyes. In their
model, the tristimulus response to reflected light is accurately ap-
proximated by a linear transformation of the tristimulus response to
illumination, allowing the prediction of several perceptual character-
istics of human vision. Later, Vazquez-Corral et al (2012) [2] built
a bridge between Philipona & O’Regan’s model and von Kries-like
approaches to color constancy in computer vision by showing that
the linear operators could be diagonalized in a common basis. How-
ever both of these studies required specifying a particular dataset of
illuminants. We will show in this paper that it is possible to compute
adequate linear operators and a common basis for diagonalization
without specifying any particular set of illuminants.

Index Terms— Philipona-O’Regan’s model, Illuminant inde-
pendency, Joint diagonality, von Kries model.

1. INTRODUCTION

Philipona & O’Regan (2006) [1] (PO) recently proposed a linear
model of surface properties as they are sensed by the human eyes.
A crucial point of the model is the definition of a linear operator in
the cone response space as being responsible for the transformation,
by the surface, of the perceived incident light into the perceived re-
flected light. Their model is able to predict perceptual characteristics
of human color vision, as unique hues and hue cancelation. Later,
Vazquez-Corral et al (2012) [2] (V-C) were able to build a bridge be-
tween PO’s model and classic strategies to achieve color constancy
in computer vision, as the von Kries diagonal method. They did
this by computing a global transformation in which all of the linear
operators defined by PO can be approximately considered diagonal.
However, both of these studies rely on the specification of a data set
of natural illuminants. This limits their robustness with respect to
every other kind of illuminant. Furthermore, V-C strategy relies on
the designation of a particular standard illuminant. We will show in
this paper that it is possible to compute linear operators and also to
make a global change of basis without resorting to any database of
illuminants.

This paper is divided in two parts: in a first part, we will
introduce PO’s model in detail and present a novel computa-
tional/statistical approach to the model that is completely illuminant-
independent. A quantitative comparison will be discussed between

the two. In a second part, we will start by explaining thoroughly
how the link between PO’s model and classical strategies to achieve
color constancy can be made through the definition of a global diag-
onalizing matrix. Then, we will use theoretical and computational
arguments to justify the existence of such a surface and illuminant-
independent transformation and finish by proposing a new method
to compute this transformation.

2. PHILIPONA & O’REGAN’S MODEL

2.1. Biological analogy of a surface reflectance

Consider a surface S illuminated by a light with spectral power distri-
bution E(λ), λ ∈ Λ = [400, 700]nm, Λ being the visual spectrum.
LetRL(λ),RM (λ),RS(λ) denote the absorption rate at each wave-
length λ by photopigments present in the L,M,S human photore-
ceptors. The information accessible to the human nervous system
can be expressed by u(E) = (uL(E), uM (E), uS(E))t, where:

ui(E) =

∫
Λ

Ri(λ)E(λ)dλ, i = L,M,S. (1)

If we denote with S(λ) the reflectance function of the surface S, we
can describe the accessible information about the light reflected by
S as vS(E) = (vSL(E), vSM (E), vSS(E))t, with:

vSi (E) =

∫
Λ

Ri(λ)E(λ)S(λ)dλ, i = L,M,S, (2)

we stress that this equation holds true only if there is no exchange
of energy between different wavelengths (e.g. it does not hold for
fluorescent surfaces). PO hypothesized that the transformation of
u(E) into vS(E) is linear i.e.:

vS(E) = ASu(E), (3)

where AS : R3 7→ R3 is a linear operator that can be represented by
a 3×3 matrix and which should only depend on the surface S and not
on the illuminant E. We interpret AS as the biological analogue of
the physical reflectance of a surface, since it is the operator respon-
sible for the transformation by a surface of the incident light into the
reflected light, as sensed by the photoreceptors. We will thus callAS

the reflectance matrix (RM).
The assumption of the existence of such a linear operator is not

trivial. PO used statistical tools in order to verify it: they computed



the empirical variance of the residuals η = vS(E)−ASu(E), where
AS is obtained by linear regression of vS onto u over a set of natural
and simulated daylight illuminants [1]. The coefficients of linear
determination R2 for their set of surfaces (over 1600 Munsell chips
and 1800 natural surfaces) are surprisingly high, with mean values
higher than 0.995, which shows the validity of the linear hypothesis.

We notice that, with this method, the matrix AS depends on the
dataset of illuminants used to compute it. In Section 3 we will dis-
cuss in greater detail this dependence and present a novel method for
the computation of the RMs that allows complete independence with
respect to the illuminant.

2.2. Diagonalization of the reflectance matrix and computation
of the virtual basis

PO showed that for every surface of their database, the RM AS can
either be exactly diagonalized or almost diagonalized with three dis-
tinct real eigenvalues. In other words, there exists an invertible ma-
trix T S, which depends on the surface S, such that:

vS(E) =
(
T S
)−1

DST Su(E), (4)

whereDS is a diagonal 3×3 matrix. T S : R3 → R3 is then the linear
operator responsible for the change of basis where AS is diagonal.
This basis is given by the eigenvectors of AS.

Equation (4) can be rewritten as:

T SvS(E) = DST Su(E)

ṽS(E) = DSũS(E),
(5)

where ũ(E) and ṽS(E) are vectors in the new basis obtained by ap-
plying the operator T S. Note that, since T S depends on the surface
S, so does ũS(E).

By linearity and recalling Eq. (1), we can write T Sui(E) =∫
Λ

∑
j T

S
ijRj(λ)E(λ)dλ, for every i, j = L,M,S. If we define

R̃i =
∑

j=L,M,S

T S
ijRj(λ), we find:

ũS
i (E) =

∫
Λ

R̃i(λ)E(λ)dλ, i = L,M,S, (6)

and likewise for ṽSi (E).
V-C [2] have interpreted R̃i as the absorption rate at each wave-

length λ of virtual photopigments present in virtual photoreceptors.
For this reason, the basis in which the RM is diagonal is called the
virtual basis, denoted by L̃M̃S̃S. The diagonality of the RM im-
plies that the components of ũS(E) do not mutually interact with
each other when they are reflected by the surface S, and are simply
individually scaled by the associated eigenvalues. In other words,
the absorption rate curves of the virtual photopigments are less over-
lapping than the real ones.

Then, by definition of the virtual basis we have ṽSi (E) =

rSi ũ
S
i (E), i = L̃, M̃ , S̃, which is equivalent to:

rSi =
ṽSi (E)

ũS
i (E)

. (7)

rS
L̃
, rS

M̃
, rS

S̃
can thus be simply interpreted as three independent re-

flection coefficients in each of the three virtual channels.

3. ANALYSIS OF THE INDEPENDENCE OF PHILIPONA &
O’REGAN’S LINEAR HYPOTHESIS WITH RESPECT TO

THE ILLUMINANT

As said previously in Section 2.1, the method used by PO to com-
pute the RM is intrinsically dependent on the database of illumi-
nants it relies on. As a consequence, the computed RMs will not
accurately apply to an illuminant E sharing poor similarities with
the database used for the linear regression. In this section, we will
discuss a procedure to compute the matrices AS without resorting to
any particular database of illuminants. We will see that the technique
we propose is a good trade-off between robustness with respect to il-
luminant changes and the consistency of the matrices AS with the
linear model expressed by Eq. (3).

3.1. A novel approach to compute the RMs independently with
respect to the illuminant

Let AS
ij , j = L,M,S, denote the components of AS. Then, if the

linear hypothesis of PO holds true, we can easily explicitly write Eq.
(3) in components as follows:

vSi (E) =

∫
Λ

E(λ)
∑
j

AS
ijRj(λ)dλ, (8)

which, if we introduce the notation R(λ) = (RL, RM , RS)(λ),
is equivalent to:

vS(E) =

∫
Λ

E(λ)ASR(λ)dλ. (9)

Thanks to Eq. (2), Eq. (9) can be rewritten:∫
Λ

E(λ)
(
S(λ) · R(λ)−ASR(λ)

)
dλ = 0. (10)

The other assumption of PO is that the RM should be independent
of the illuminant, i.e. Eq. (10) must be true for any E(λ). From the
Fundamental Lemma of Calculus of Variations [3], it follows that:

S(λ) · R(λ)−ASR(λ) = 0, ∀λ ∈ Λ. (11)

Thanks to Eq. (11), we can avoid performing a linear regression
over a specified database of illuminants as in PO’s method, because
it can now be performed over Λ. We will call this approach the
Illuminant Independent (II) approach.

3.2. Quantitative comparison between PO’s and the II ap-
proaches

Similarly to PO [1], we checked the validity of the linear and
illuminant-independent hypothesis by computing the empirical vari-
ance of the residual η = y − ŷ, where y is the known quantity
that the linear model tries to approximate and ŷ is the approximated
value obtained with the model. However, since we want the model
to satisfy both Eq. (3) and Eq. (11), we considered the two kind of
residuals defined in the following table:

Residual y ŷ

η1 S(λ) · R(λ) ASR(λ)

η2 vS(E) ASu(E).

Table 1. Residuals according to Eq. (3) and Eq. (11).



AIII
1 VAII

2 VAPO
2

mean median min mean median min mean median min
natural 0.9657 0.9795 0.5025 0.9970 0.9996 0.9193 0.9994 0.9997 0.9883

fluorescent ” ” ” 0.9945 0.9975 0.8723 0.9869 0.9945 0.6553
monochromatic ” ” ” 0.9633 0.9783 0.3772 0.9168 0.9600 -0.0230

Table 2. AI values in the case of natural, florescent and almost-monochromatic illuminants. See text for further explanations.

For further clarification, we used the exponents PO and II to differen-
tiate the cases where the RMs have been computed with PO’s or the
II approach, respectively.

We will denote with AIki the indicator of accuracy of the linear
model, i.e.

AIki = 1−
〈

var(ηk
i )

var(yi)

〉
, i = 1, 2, k = PO, II, (12)

where 〈 〉 represents the average of the quantity inside w.r.t. the
channels L,M,S. This indicator is bounded from above by one, and
it can also reach negative values. The closer it is to one the more
accurate is the model.

For our calculations we used the same databases as PO did for
natural illuminants [4–6] and for Munsell chips [7], the latter made
available by the University of Joensuu (http://spectral.joensuu.fi/).
However, the database of natural surfaces that we used was taken
from [8], Joensuu and Trieste Universities. For cone sensitivities,
we used the 2◦ Stockman & Sharp cone fundamentals [9] as in [10]
instead of the 10◦ Stiles & Burch [11] or the Smith & Pokorny [12]
color matching functions used in PO’s and V-C’s papers respectively.
The reason for our choice is simply that Stockman & Sharp cone
fundamentals directly refer to the sensitivity of human photorecep-
tors. We have checked that the results are similar for all of the sensor
functions chosen among those three.

Figure 1 and Table 2 summarize the results obtained with the
II approach. In both graphs of Figure 1, the full and dashed lines
represent the average and median value of AIki , respectively. The
graph on the left refers to AIII

1 , while on the right we show that of
AIII

2 .
The average values for the two graphs are 0.97 for AIII

1 and 0.997
for AIII

1 . However, it is important to stress that the minimum attained
by AIII

1 is 0.50, while that of AIII
2 is 0.92.

(a) (b)

Fig. 1. a: AIII
1 . b: AIII

2 , for their definition, see (12).

The results for AIII
1 show that, even though the linear and

illuminant-independent hypothesis hold true for the large majority
of the reflectance functions considered, they do not for all of them.
However, the model still allows a very good approximation of the
information about the reflected light vS(E), as shown by the results

for AIII
2 . The explanation of this fact would require too much space

and we will provide it in further communications.
Looking at Table 2 and comparing the AIII

2 and AIPO
2 obtained for

natural illuminants, one could argue that theAS computed with PO’s
approach allows better results than with the II approach. The rea-
son for this is that, since the regression matrices AS calculated with
PO’s strategy are computed with respect to a particular set of illu-
minants, natural in this case, they are optimally adapted to it, while
those computed with the II approach are not. Thus, we thought it
would be interesting to test the robustness of the two approaches
with respect to illuminant changes i.e the consistency between the
AS matrices and the linear model in Eq. (3) when a drastic change
of E(λ) occurs. In order to test this, and for the sake of compari-
son with the prior work of Witzel et al. [10] we considered the same
illuminant datasets they used: the first one was of fluorescent illu-
minants and the second was of almost-monochromatic visual lights.
Both types of illuminants are very different from the natural ones.

In Table 2, we show the AI values with the II and PO approaches
for natural, florescent and almost-monochromatic illuminants. The
key point is that all values of AIPO

2 were calculated with the RMs
computed over the dataset of natural illuminants and applied to the
fluorescent and almost-monochromatic conditions.

We notice that PO’s matrices become less and less adapted to
satisfy the linear model when we pass from the natural illuminant
dataset to the florescent and the almost-monochromatic ones, with
AIPO

2 average values of 0.999 to 0.987 to 0.917 respectively. In
particular, we observe the presence of a negative value for AIPO

2 ,
which clearly indicates that, in this case, the matrix computed with
PO’s approach is not appropriate. Instead, the AS matrices com-
puted with the II model remain, in terms of mean, median and min-
imal value, a better approximation than PO’s for the florescent and
almost-monochromatic sets.

Once computed, the RMs found with the II approach are more
reliable than those found with PO’s in terms of generalisability to
other illuminants. They can thus serve as a starting point to find a
unique change of basis transform independent with respect to the
illuminant.

4. A THEORETICAL AND COMPUTATIONAL
DISCUSSION OF PO’S MODEL IN THE CONTEXT OF

COMPUTER VISION

In their article, PO, and after them V-C, pointed out the possible link
of the model with common approaches used in computational vision
to achieve color constancy, such as the von Kries algorithm [13].
They argued that this link is valid if the matrices AS can be diag-
onalized using a unique transformation that is independent of the
surface S. V-C computed such a transformation, however still rely-
ing on the specification of a dataset of illuminants, and, furthermore,
on the specification of an illuminant of reference.

For the sake of clarity, we will start this section by describing
thoroughly the bridge between PO’s model and computer vision.



Then, we will show that the existence of a S-independent diago-
nalizing transformation is a theoretical consequence of PO’s model
applied to multiple surfaces. Finally, we will present a novel ap-
proach to compute this transformation which, due to its use of the
matrices computed with the II approach, is completely illuminant-
independent.

4.1. Bridge between PO’s model and computer vision

Suppose that we have a visual scene illuminated by only one spa-
tially homogeneous light source E(λ), and consider an RGB cam-
era with spectral sensitivity functions picked in the low, medium
and high visible wavelengths, usually indicated with R, G and B,
respectively. We denote the spectral sensitivity functions as ρc :
Λ → R+, c ∈ {R,G,B}. The analysis performed in [14] showed
that supp(ρc), the supports of the functions ρc, are very similar and
weakly overlapping compared to the spectral sensitivity functions of
retinal cones.

In the Lambertian digital image formation model, see e.g. [15],
the intensity vc(x,E) of a pixel x in the chromatic channel c is rep-
resented as follows:

vc(x,E) =

∫
Λ

ρc(x, λ)S(x, λ)E(λ)dλ. (13)

If we consider the supports supp(ρc) as not overlapping and the re-
flectance functions S(x, λ) as constant with respect to λ in each
subset supp(ρc), i.e. S(x, λ) ≡ Sc(x) for all λ ∈ supp(ρc) and
c ∈ {R,G,B}, then vc(x,E) can be re-written as:(

vR(x,E)
vG(x,E)
vB(x,E)

)
=

(
SR(x) 0 0

0 SG(x) 0
0 0 SB(x)

)(
uR(E)
uG(E)
uB(E)

)
. (14)

Notice that the simultaneous dependence on x andE of the left-hand
side of the equation is separated into two multiplicative components,
one being the diagonal matrix of elements Sc which depends on x,
and the other being the vector components uc which depend on E.

The von Kries diagonal transformation [13], used as a basis in
several approaches to color constancy, see e.g. [16, 17], is described
by the following formula:(

SR(x)
SG(x)
SB(x)

)
=

(
1/uR(E) 0 0

0 1/uG(E) 0
0 0 1/uB(E)

)(
vR(x)
vG(x)
vB(x)

)
.

(15)
We stress that the von Kries matrix transformation is diagonal thanks
to the diagonal nature of Eq. (14). Moreover, its independence with
respect to the pixel position x is a consequence of the separability
property of Eq. (14).

We would like to translate what we have just stated into the terms
of PO’s model. First of all, the equivalent of Eq. (14) in PO’s setting
is Eq. (3). The matrices appearing in the two formulae depend only
on surface properties. HoweverAS is not diagonal, thus it is not pos-
sible to write a von Kries-like transformation to obtain information
on the reflectance.

Notice, however, that in the virtual basis expressed by Eq. (5)
the RM is diagonal. If we write Eq. (5) in terms of components we
find: (

ṽSL̃(E)
ṽSM̃ (E)
ṽSS̃(E)

)
=

(
rSL̃ 0 0
0 rSM̃ 0
0 0 rSS̃

)(
ũS

L̃(E)
ũS

M̃ (E)
ũS

S̃(E)

)
. (16)

By direct computation, the previous formula can be re-written as:

(
rSL̃
rSM̃
rSS̃

)
=

(
1/ũS

L̃(E) 0 0
0 1/ũS

M̃ (E) 0
0 0 1/ũS

S̃(E)

)(
vSL̃(E)
vSM̃ (E)
vSS̃(E)

)
.

(17)
If we look at Eqs. (15) and (17) we see that in the latter the diagonal
matrix depends on the surface S, as a consequence of the dependence
of ũS = T Su on S. This argument shows that, if we want to be
able to apply a von Kries-like transformation in PO’s framework,
the transformation T S to the virtual basis must be independent of S.

In the following subsections we will discuss this important issue
in theoretical and computational terms.

4.2. A theoretical argument for the existence of a unique virtual
basis in the context of PO’s framework

The existence of a global change of basis transformation can be the-
oretically derived from Eqs. (1), (2) and (3), the very roots of PO’s
model. First of all, let us recall an important result of linear alge-
bra: a set of matrices is simultaneously diagonalizable if and only
if they commute. In particular, in PO’s setting, this means that two
matrices AS1 and AS2 , relative to two arbitrary surfaces S1 and S2,
can be diagonalized in the same basis if and only if they commute,
i.e. AS1AS2 = AS2AS1 . We shall now give an argument to show
that the commutativity of these matrices must indeed hold true. First
of all, notice that, from a physical point of view, light reflected by
a surface of spectral reflectance S(λ) is indistinguishable from light
emitted by a source whose power distribution is E(λ)S(λ). Con-
sidering Eqs. (1) and (2), this can be translated into the following
expression:

vSi (E) =

∫
Λ

Ri(λ) [S(λ)E(λ)] dλ, i = L,M, S

= ui(S · E).

(18)

Thus, if we consider the situation of a ray of light reflected by a
surface S1 onto another surface S2, then due to the definition of re-
flectance [18] the accessible information about the light reflected in
this process is:

ui(S1S2 · E) =

∫
Λ

Ri(λ) [S1(λ)S2(λ)E(λ)] dλ

=

∫
Λ

Ri(λ) [S2(λ)S1(λ)E(λ)] dλ

= ui(S2S1 · E),

(19)

which shows that the role of S1 and S2 can be inverted in the process
described above.

If we write it in its vector form we find:

u(S2S1 · E) = vS2(S1 · E) = AS2
∫

Λ

R(λ)S1(λ)E(λ)dλ

= AS2AS1u(E).

(20)

Similarly, if we compute u(S1S2 · E), we obtain AS1AS2u(E).
Thanks to Eq. (19), we have AS1AS2u(E) = AS2AS1u(E) for all
pairs of surfaces S1 and S2, hence the commutativity of the RM ma-
trices and the existence of a global change of basis transformation.



Stockman & Sharp Smith & Pokorny Stiles & Burch 1.6934 −1.5335 0.0750
−0.8547 2.1269 −0.2243
0.0215 −0.0432 1.0169

  1.7191 −1.5603 0.0666
−0.8836 2.1573 −0.1800
0.0349 −0.0680 1.0128

  1.0388 −0.3447 0.1559
−0.1066 1.0896 −0.1059
0.0043 −0.0137 1.0127


Table 3. Optimal global change of basis matrix found with the gradient descent for the three kinds of cone sensitivities used in [1], [2], [10].

4.3. A novel strategy to find a unique diagonalization matrix in
PO’s setting

Now that we have provided an argument for the existence of a unique
transformation T able to jointly diagonalise all RM at once, we have
to computationally find it.

This problem has already been considered by V-C et al. in [2],
where the authors proposed a strategy to find T which, however,
depends on the choice of a particular illuminant and, once again, on
the database that was selected. Here we are going to describe a new
strategy that does not have these limitations.

A commonly used measure for the the joint diagonality of a
set of N matrices {Mk}Nk=1 proposed in [19] is the average of the
squared Frobenius norm of the off-diagonal elements of each matrix,
i.e.

JD =
1

N

N∑
k=1

∑
i 6=j

∣∣∣Mk
ij

∣∣∣2 (21)

=
1

N

N∑
k=1

∥∥∥[Mk − diag(Mk)]ij

∥∥∥2

FRO
. (22)

The larger JD, the less the set of matrices is jointly diagonal.
The goal of the algorithm that we want to propose is thus to find

the optimal change of basis transformation Topt that minimizes JD.
Using the notations introduced for PO’s framework in the case of N
surfaces Sk, we can write the optimality condition as follows:

Topt = arg min
T∈R3×3

JD(T )

= arg min
T∈R3×3

1

N

N∑
k=1

∑
i6=j

∣∣∣(T−1ASkT )ij

∣∣∣2 . (23)

We stress that the matrices that appear in the previous equa-
tion are not symmetric nor self-adjoint, thus we cannot apply the
minimization strategies proposed in [19–23] in our context. How-
ever, the gradient descent strategy proposed by (Hori, 1999) [24]
can be adapted to our framework because it requires only the non-
singularity of matrices.

The gradient of JD is:

∇JD(T ) = 2T

N∑
k=1

[(
T−1ASkT

)t
,
(
T−1ASkT − diag(T−1ASkT )

)]
,

(24)
where [M1,M2] = M1M2 − M2M1 is the commutator between
matrices, so the discrete gradient descent equation to find Topt is:

Tn+1 = Tn − αn
∇JD(Tn)

‖∇JD(Tn)‖ , n ≥ 0 (25)

where 0 < αn < 1 is the step dependent weight of the numerical
scheme.

The matrix which minimizes the error JD, among the 2340
matrices of our dataset with columns given by the eigenvectors of{
ASk

}
, was selected as the initial transformation T0.

The stopping criterion of the numerical scheme is the follow-
ing: we consider that the algorithm converged when the L1 distance
between Tn+1 and Tn is less than ε = 10−3. This value for ε was
chosen empirically on the basis of the numerical values of the matrix
elements of Tn, as well as for the efficiency of the algorithm.

In Fig. 2 we show the decreasing behavior of JD(Tn) with re-
spect to n. It can be seen that, after 6 iterations, the corrections
are negligible. Thus, in practice, we can consider the algorithm to
be convergent after 6 iterations with a value of JD of 0.0006. This
value is such that ratio between the squared Frobenius norm of the
off-diagonal elements and that of the whole matrices, averaged over
the entire dataset, accounts for less than 0.4%. This empirically con-
firms that the resulting matrices are all almost diagonal.

Fig. 2. Gradient descent applied on the set of 2340 RMs computed
using the II approach.

Table 3 shows the Topt found with the gradient descent for the
three kinds of cone sensitivities.

5. CONCLUSION

We have shown in this work that an alternative method to PO’s can
be used to compute the reflectance matrices AS. This method has
the advantage of being fully independent with respect to the illumi-
nant. It is thus more robust to illuminant change, while still allowing
satisfactory results in the approximation of the information avail-
able to the eye about the reflected light vS(E). It also allows the
computation, through a simple gradient descent, of a global change
of basis transformation T which is independent of illuminants, and
compatible with classic von Kries-like approaches to achieve color
constancy despite the significant overlap of human cone sensitivity
functions.
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