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Abstract— Current machine learning techniques proposed
to automatically discover a robot kinematics usually rely
on a priori information about the robot’s structure, sensors
properties or end-effector position. This paper proposes a
method to estimate a certain aspect of the forward kinematics
model with no such information. An internal representation of
the end-effector configuration is generated from unstructured
proprioceptive and exteroceptive data flow under very limited
assumptions. A mapping from the proprioceptive space to this
representational space can then be used to control the robot.

I. INTRODUCTION

One of the problems an autonomous robot must be able
to solve is to retrieve basic information about its own topo-
logical structure relying on minimal a priori information.
The problem of learning the kinematics of a manipulator was
approached by a number of machine learning techniques (see
review in [10]). It is usually assumed that the end-effector
position is registered using an external measuring system and
the problem consists of finding a mapping between the joints
space and the end-effector position. Some attempts were
made to learn so-called ’visual-motor’ mappings between the
joint angles and end-effector’s image in the robot-mounted
visual system [2]. These approaches rely a lot on a priori
assumptions about the properties of sensors and the robot
structure. In alternative approaches no such assumptions are
made, but they require the robot surface to be covered with
an artificial skin [9], [5].

Imagine a robotic arm with an unspecified number of
links and a camera installed on one of them. The camera
output is scrambled, so that the order of pixels is completely
broken and some of them are missing. The robot measures
its configuration with uncalibrated encoders in the joints,
but as the geometrical properties and links topology are
unknown, these measurements do not tell anything about the
actual configuration of the robot in space. Such a robot does
not have explicit measure of its end-effector position, but
this information is implicitly available if the output of the
camera is different for different positions / orientations. This
implicit information can be sufficient to build an internal
representation of the end-effector space, which has the same
topology as the actual end-effector space but may have
different metrics. Such a representation simply associates all
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configurations of the robot, for which the camera position
and orientation are the same and thus introduces a new
topology on the space of the encoder outputs. Building
such a representation would be a trivial task if the camera
position and orientation were available. In our case they are
only accessible through the scrambled picture it provides. In
this study we present an algorithm that builds an internal
representation of the end-effector configuration space, from
the unordered and scrambled information provided by the
camera (or any other exteroceptor) installed on the end-
effector.

The overall idea is illustrated in Fig. 1. The robot accesses
its kinematic state through the proprioception (e.g. encoders
in joints) but has no information about its geometry or topo-
logical structure. The state of the environment is reflected in
the outputs of the exteroceptors (camera, microphone array,
set of photodiodes, etc). When the environment does not
change, the output of the exteroceptors is determined by the
position of the end-effector. The aim of the algorithm is to
build an internal representation of the end-effector space by
associating all proprioceptive inputs that correspond to the
same outputs of the exteroceptor. Note that the topology of
the internal representation can be different from the one of
the true end-effector space if the exteroceptors have the same
outputs for different end-effector positions.

We present a neural network-based algorithm that maps a
potentially high dimensional proprioception space into a low
dimensional space of internal representation. The dimension
of the latter is assumed known here and can be estimated
using methods like in [6], [3]. We test the quality of the
mapping by making a simulated robot performing reaching
movements using the Jacobian of the mapping defined by
the neural network.

II. METHOD OVERVIEW

The overall method section consists of three parts. The first
part describes a learning algorithm for the neural network
(NN) mapping the proprioception P to an internal represen-
tation Ξ, which is topologically equivalent to the space of
end-effector configurations C. The Jacobian of this mapping
is computed in the second part. In the third part, the routine
used for the reaching movement is described.

A. Neural network and cost function

The goal of the NN is to map elements p of the proprio-
ception space P into the elements ξ of an a priori unspecified
internal representation space Ξ. The only constraint on
this space is that it must be topologically identical to the
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Fig. 1: Double-lined spaces are accessible to the robot.
Dotted-lined spaces may change for different environments.
Each proprioceptive state p generates an end-effector con-
figuration c associated with a exteroceptive state s that
depends on the environmental configuration. The goal of the
robot is to create an internal representation ξ of the end-
effector configuration using topological information of the
exteroceptive space.

space of end-effector configurations C. As the end-effector
configuration c is unknown to the robot, the difference in the
exteroceptors s is used instead to generate Ξ. This approach
implies that the robot sensory experience is not ambiguous,
i.e. each exteroceptive state s is uniquely related to one
configuration c of the end-effector. Each configuration c can
however be related to multiple proprioceptive states p if the
robot is redundant.

1) Neural network architecture: We used a multilayer
perceptron (MLP [8]) with one hidden layer and a sigmoid
excitation function σ. Each weight wl,k is initially drawn
from an uniform distribution in [−1, 1]. Excitation yk of
neuron k is computed as follows:

yk = σ
(∑

l

wl,kyl

)
= σ

(
ek
)

(1)

with yl the excitation of neuron l in previous layer and σ(·)
the sigmoid function.

The number of input neurons N in is equal to the dimen-
sion of the proprioceptive space P . The number of hidden
neurons Nh is arbitrarily set to 30. It could naturally be
modified according to the expected mapping complexity. The
number of output neurons Nout is equal to the number of
independent variables necessary to describe the exteroceptive
state s. In the following, Nout is assumed known, but its
value could be determined through an exteroceptive manifold
analysis [6], [3]. Note that if the robot’s sensory capacity
doesn’t allow a complete characterization of the end-effector
configuration c, the number of independent variables Nout

can be smaller than expected from an external point of view.
2) Cost function minimization: As it is difficult to build a

cost function that only captures the similarity of the topology,

we required the NN to preserve in Ξ the distances between
the points in the exteroception space S. The cost function is:

Q =
∑
i,j Q

i,j ,

Qi,j = h
(
||si,j ||

)(
||ξi,j || − ||si,j ||

)2
+ γ
(
||ξi||2 + ||ξj ||2

)
with:

||si,j || = ||si − sj || and ||ξi,j || = ||ξi − ξj ||
(2)

where ||.|| denotes the euclidean norm, ξi (resp. ξj) is
the network output for the proprioceptive configuration pi

(resp. pj), si (resp. sj) is the exteroceptive state associated
with pi (resp. pj), γ is a small centering factor added for
the purpose of regularization, and h(.) is a neighborhood
function designed to give more weight to small exteroceptive
distances. In the following, h(.) is a simple step function:

h(a) =

{
1 if a ≤ µ
0 otherwize (3)

Unlike traditional MLP cost functions, Qi,j is defined for
pairs of inputs {pi, pj} and outputs {ξi, ξj}. Only distances
||ξi,j || in the output space Ξ are then constrained. More-
over, this constraint is defined through auxiliary distances
||si,j ||. The first term of the sum is minimized when outputs
distances ||ξi,j || tend to be equal to exteroceptive distances
||si,j ||. The second term is a centering cost that is minimized
when outputs ξ tend towards 0 (Note that γ must be small
enough not to disturb the first term minimization). Conser-
vation of the exteroceptive space topology is achieved by
respecting only small exteroceptive distances ||si,j || through
the use of the neighborhood function h(.).

We used RPROP algorithm to find a minimum of the
cost function [7]. The algorithm updates the weights wl,k
according to the sign of the local gradient ∂Qi,j

∂wl,k
defined as

follows:
• if neuron k is in the output layer

∂Qi,j

∂wl,k
= h

(
||si,j ||

)(
δiky

i
l + δjky

j
l

)
(4)

δik = 2

(
γ
(
yik + yjk

)
+
(
yik − y

j
k

)(
1− ||s

i,j ||
||ξi,j ||

))
σ′(eik)

δjk = 2

(
γ
(
yik + yjk

)
−
(
yik − y

j
k

)(
1− ||s

i,j ||
||ξi,j ||

))
σ′(ejk)

• if neuron k is in the hidden layer

∂Qi,j

∂wl,k
= yilσ

′(eik)
∑
n

δinwk,n + yjl σ
′(ejk)

∑
n

δjnwk,n

(5)
where σ′(.) is the derivative of the excitation function
(sigmoid).

3) Exploration and learning: The data necessary to per-
form the learning are generated through a random exploration
of the robot’s working space. First, N proprioceptive states
pi are randomly selected in the neighborhood of the reference
configuration. The neighborhood was defined so that the
deviation of each proprioceptive value pik did not exceed
a predefined value A. The configurations falling out of the



working space were discarded. Then the exteroceptive values
si associated with those proprioceptive states are computed.
The proprioceptive commands pi and exteroceptive states si

are normalized to avoid saturation of the sigmoid excitation
function:

p̃i = 0.8(pi − p̄)/max
i,k

(|pik − p̄k|) (6)

s̃i = 0.4(si − s̄)/max
i,k

(|sik − s̄k|) (7)

Finally, all possible pairs {p̃i, p̃j} with j ∈ {i+ 1, N}, and
corresponding {s̃i, s̃j}, are created to form the learning base.
The RPROP algorithm is applied for T iterations or until the
error Q reaches a minimal value Qmin.

In most cases the cost function (2) has numerous local
minima, that makes its minimization difficult. In order to
assure better initial conditions we performed specific initial-
ization of the network. We generated an Nout-dimensional
unfolding of the exteroceptive set {s̃i} using Isomap [11]. A
usual quadratic error minimization is then performed using
the resulting projection as the desired values ξ of the NN
[8].

This preliminary learning is supposed to bring the network
in a favourable basin of attraction before the less-constrained
cost minimization described in II-A.2 is applied. Note that
the NN initialization is performed for a fixed environment.
The latter can however be different and even change during
the Q minimization as long as distances ||si − sj || are
computed for a single environment (see (2)). In the following,
three random environments are considered, leading to three
successive explorations during the minimization of Q.

B. Jacobian estimation
Once trained, the NN defines a mapping F from the

proprioceptive space P to the internal representation space
Ξ, topologically equivalent to the configuration space C of
the end-effector (see Fig.1).

The mappings F and the corresponding spaces Ξ vary
from run to run. What should remain invariant however, is
that if any two configurations of the robot p1 and p2 are
mapped to the same ξ by the function F computed in the
first run, then these configurations must be also mapped to
the same value ξ′ by the function F ′ computed in any other
trial. Moreover, if two configurations c1 and c2 are close
in C, their corresponding representations ξ1 and ξ2 must be
close in the internal space Ξ.

This simply implies that the Jacobians of the functions
F and F ′ have the same null-spaces (kernel) at every point
p and their null-spaces coincide with the null-space of the
mapping

c = G(p)

relating the configuration of the robot to the real end-effector
position.

The Jacobian of F is defined as

JF (p) =
∂F

∂p
=


∂ξ1
∂p1

. . . ∂ξ1
∂pNp

...
...

...
∂ξn
∂p1

. . . ∂ξn
∂pNp

 . (8)

The partial derivatives ∂ξ/∂pk were computed using Eu-
ler’s formula

∂ξ

∂pk
=

1

ε

(
F (p+ εpk)− F (p)

)
(9)

where pk is the k-th basis vector of the proprioceptive space
and ε is a small value.

For later comparison, the Jacobian JG of G is determined
analytically.

C. Use of the estimated Jacobian in a reaching task
The trained NN captures the topological properties of

the robot’s forward kinematics and can then be used to
perform a reaching task. Let p(0) be an initial proprioceptive
configuration in the portion of the proprioception space P
explored during the learning phase and ξ(0) be the output
associated with p(0). Let ξ∗ be the desired configuration
in the internal representation space Ξ. The Jacobian JF of
F can be used to determine the shortest trajectory in the
proprioceptive space such that internal state ξ(t) moves along
a straight line from ξ(0) to ξ∗. The reaching algorithm is as
follows, with t the current iteration:
• estimate the Jacobian in p(t) (see (8), (9)).
• compute the proprioceptive configuration update:

∆p(t) = J+
F ∆ξ = J+

F (ξ∗ − ξ(t)), (10)

where J+
F denotes the Moore-Penrose pseudoinverse of

JF .
• update proprioceptive configuration with a fixed step

size ε:
p(t+ 1) = p(t) + ε

∆p(t)

||∆p(t)||
(11)

• iterate the process with t = t+1, while ||ξ(t)−ξ∗|| > ε.
Similar rules were used when reaching was performed in

the real end-effector configuration space C using the analytic
Jacobian JG. We call the reaching trajectories ‘F -based’
when they are generated using the NN-estimated function
F , and ‘G-based’ if the exact mapping G was used instead.

III. RESULTS
The learning and reaching algorithms described in II-A

and II-C are applied to a simulated robotic arm in 2D space
(see Fig. 2a). The robot is redundant and has access to three
proprioceptive variables pk when the end-effector has only
two degrees of freedom (dof). Two scenarios are considered
depending on the kind of exteroceptive information the robot
has access to (described hereafter). For each scenario, the
algorithms parameters are set to:
• threshold of the neighborhood function: µ = 0.1.
• centering factor: γ = 10−3.
• maximum number of learning iterations: T = 1500.
• minimal error value: Qmin = 10−10.
• number of exploratory movements: N = 1000.
• reference proprioceptive configuration:

[m1,m2,m3] = [π5 ,−
3π
5 ,

3π
5 ] (rad).

• proprioceptive exploratory amplitude: A = π
2 (rad).

• proprioceptive amplitude for the Jacobian estimation
and update step size: ε = 10−3.



(a) Scenario 1: position sensor. (b) Scenario 2: retina.

(c) Light projection. (d) Projection of the exteroceptive dataset.

Fig. 2: The robotic arm is made up of three segments of equal length. The relative segments orientations are controlled
by individual motors {m1,m2,m3}. (a) Scenario 1: the end-effector is equipped with a position sensor. (b) Scenario 2:
the end-effector is equipped with a retina-like sensor sensible to colored light sources placed in the environment. (c) Each
source is projected on the retina through a pinhole lens. The closer the source is to the retina and its projection is to a
cone, the stronger the cone excitation. (d) Example of a 6D exteroceptive dataset projected on the 3 first coordinates of the
exteroceptive space.

A. Scenario 1

In the first scenario, the robot is equipped with a position
sensor providing the cartesian coordinates of its end-effector
in absolute space. The one redundant dof of the arm implies
that the null-spaces of JF and JG are lines in proprioceptive
space P from which angular divergence can be computed. On
a set of 49 proprioceptive configurations pi associated with
regularly distributed end-effector positions ci in the working
space (see Fig. 3a and 3d), those null-spaces were close
with an angular divergence of 1.5 deg±1.5 deg (average ±
standard deviation).

Figure 3a presents several F -based and G-based reaching
trajectories computed using the mappings F and G respec-
tively. The target points for F - and G-based trajectories
are defined in different spaces (Ξ and C, respectively). To
assure that they are consistent with each other, we first
choose the target point c∗ for the G-based trajectory, take
a random robot configuration p∗ corresponding to this point
(i.e. G(p) = c), and then define the target ξ∗ as ξ∗ = F (p∗)
for F -based trajectory.

Note that the configuration p∗ usually does not coincide
with the final configuration of the arm for the F -based
trajectory. Hence, if the mapping F were imprecise, the final
points of the F - and G-based trajectory could be different.
As Fig. 3a clearly shows, it is not the case here.

There is still a small divergence between the F - and G-
based trajectories. The reason of it is that the spaces Ξ and

C do not have the same metrics and hence a straight line in
C may correspond to a curve in Ξ and vice versa. Figure 3b
shows the same reaching trajectories, but in the space of
internal representation Ξ. It can clearly be seen that the F -
based trajectories, which were curved in the space C (Fig 3a),
are straight in the space of Ξ, and that the opposite holds for
G-based trajectories.

The proprioceptive (angular) profiles differed very slightly
for F - and G-based trajectories. Figure 3c presents the
worst case (corner-to-corner reaching) and still the blue and
orange curves are barely distinguishable. Taken together, all
presented evidences suggest that in scenario 1 the robot was
able to learn the internal representation of its end-effector
configuration space.

B. Scenario 2

In the second scenario, the robot is equipped with an
array of photoreceptors resembling animal’s retina. To keep
the dimensionality of the problem the same as in the first
scenario we assume that the retina preserves its orientation
in the absolute reference frame. Note that this assumption is
made exclusively for the sake of comparison; a qualitatively
similar behavior can be expected when the retina is allowed
to rotate.

The environment is represented by numerous red and
blue light sources placed in front of the robot (see Fig.
2b). The light sources are projected on the retina through
a pinhole lens as illustrated in Fig. 2c. There are two kinds



Fig. 3: (a)(d): G-based and F -based trajectories for several target configurations c∗ distributed in the working space for
scenarios 1 and 2 respectively. (b)(e): internal target states ξ∗ associated with external configurations c∗ and G-based and
F -based trajectories in the internal space Ξ. (c)(f): proprioceptive profiles of the worst reaching case task displaying the
greatest deviation of F -based trajectory from the G-based one.

of photoreceptors: sensitive to blue light and sensitive to red
light. The retina has six photoreceptors, three of each kind.
The response of the k-th photoreceptor to a single source e
has Gaussian profile:

sk,e =
exp(−||yproje − yphk

||2)

De
(12)

where yproje is the position of the source e projection on
the retina, yphk

the position of the photoreceptor k on the
retina and De the distance between the lens’ center and the
source e. The excitation sk of the k-th photoreceptor equals
the sum of sk,e for all sources e of the corresponding color.

In this case the exteroceptor space is built on six photore-

ceptors and thus has dimension six. For illustration, a three-
dimensional projection of the exteroception component of
the training data is shown in Fig. 2d. In scenario 2, this
cloud of points represents the information that the agent
has about its end-effector position. One can notice that the
points tend to form a surface. This happens because although
the dimension of the exteroception space is six, there is
only a two-dimensional manifold of different positions of
the end-effector (retina). Clearly, from this cloud of points,
the position of the end-effector cannot be easily extracted.
Moreover, as the environment changes, so does the surface
to which the points lean.

Figure 3d presents the F - and G-based trajectories gen-



erated for the same reaching targets, defined the same way
as in scenario 1. Again, in spite of the fact that the angular
configurations are different at the final points of both types
of trajectories (see Fig. 3f), the final end-effector positions in
the real space are the same. This shows that the mapping F
correctly associates the configurations with the same retina
position. Indeed, the null-space of the Jacobian JF was close
to the null-space of JG: the angular difference between them
was 4.8 deg±5.7 deg.

The F - and G-based trajectories have significantly differ-
ent shapes. This result can be understood by looking at the
projection of the potential target grid in the internal represen-
tation space Ξ (see Fig. 3e). The use of the retina implies that
the metrics of Ξ, locally derived from exteroceptive metrics,
is significantly different from the metrics in C. The grid of
targets ξ∗ for F -based trajectory is non-uniform in the Ξ
space.

The evolution of each proprioceptive component (angles)
for the worst reaching case is presented in Fig. 3f. Here
again, these proprioceptive changes correspond to the short-
est angular trajectory for which the robot moves along a
straight line in the representation space Ξ.

IV. CONCLUSION

In the current study we presented an algorithm that allows
a robot to build an internal representation of its end-effector
configuration space on the basis of exteroceptive data. The
algorithm does not make any specific assumptions regarding
the nature of the exteroception, nor it requires any prior
knowledge about the robot’s geometrical properties. The
internal representation captures the topology of the real end-
effector configuration space and preserves the invariance of
the null-space of the Jacobian between proprioception and
real end-effector position.

The internal representation can be used to control the
robot and perform reaching tasks. Similar behavior could
be achieved by learning directly the relation between the
proprioceptive space and the exteroceptive space [1]. How-
ever this relation would vary for different environments. The
mapping F could also be learned by projecting exteroceptive
data in a low-dimensional representational space [4] and
then estimating a mapping from the proprioceptive space
to this projection. Both the projection and the resulting
mapping would yet depend on the environment. The NN
we proposed overtake those limitations. On one hand, both
the exteroceptive data projection and the mapping learning
are performed simultaneously through minimization of the
cost function. On the other hand, the topology conservation
criteria we introduced ensures that the internal representation
is independent from the environment but captures the invari-
ant component of successive explorations: the end-effector
configuration.

In the further development of this algorithm, we plan
to pay attention to the update of the pre-learned mapping
following the change of the environment. If the statistics of
the environment content is sufficiently large, this may help
to reduce the metrics distortion of the internal representation.

The algorithm is to be tested on a real robot. We expect
difficulties to arise with the elements of the robot structure
interfering with exteroception. As a consequence, certain
configurations can be wrongly classified as different.
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