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Abstract—With the development of deep learning, video under-
standing has become a promising and challenging research field.
In recent years, different transformer architectures have shown
state-of-the-art performance on most benchmarks. Although
transformers can process longer temporal sequences and therefor
perform better than convolution networks, they require huge
datasets and have high computational costs. The inputs to video
transformers are usually clips sampled out of a video, and the
length of the clips is limited by the available computing resources.
In this paper, we introduce novel methods to sample and tokenize
the input video, such as to better capture the dynamics of the
input without a large increase in computational costs. Moreover,
we introduce the MinBlocks as a novel architecture inspired
by neural processing in biological vision. The combination of
variable tubes and MinBlocks improves network performance
by 10.67%.

Index Terms—Video Transformer, Video Understanding, Ac-
tion Recognition, Variable Tubes, MinBlocks, UniFormerV2

I. INTRODUCTION

Action recognition is an important task in video understand-
ing. The actions consist of movements, gestures, interactions,
and activities usually conducted by humans. These actions
may exhibit both strong intra- and inter-class variations. The
same action can be performed by different people with dif-
ferent speeds in different scenarios. Some different actions
may have some similar movement patterns or be performed
in similar scenarios, these similarities make them difficult
to be distinguished. Utilizing both spatial information and
long-range temporal information is thus crucial for classifi-
cation. Therefore, action-recognition networks must extract
valid spatio-temporal features to make precise decisions. Since
videos have an additional temporal dimension, the networks
for videos processing require large computational resources.
The balance between high accuracy and computational cost is
another important topic for action recognition.

Convolutional neural networks (CNNs) have powerful spa-
tial feature extraction capabilities and have achieved great
results in image processing. However, CNNs have limitations
in processing temporal sequences for video understanding. 3D-
CNNs use convolution kernels extended to the time domain
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to extract temporal features. Thus, 3D-CNNs can aggregate
local spatio-temporal context from a rather small 3D neigh-
borhood and thus capture local dependencies. Because of the
limited receptive field, however, 3D-CNNs are less effective
in capturing global dependencies.

Transformers have led to large progress in both language
and image processing. They can effectively capture long-time
dependencies by self-attention mechanisms. In recent years,
visual transformers have been the state of the art on video
action recognition benchmarks. There are different transformer
variants that achieve high performance on video datasets.
Nevertheless, transformers have only limited capabilities to
reduce local redundancies since they are ”blindly” comparing
the input tokens. Moreover, the requirements of huge datasets
and computing resources are limiting their development, since
only large labs with sufficient computation resources can
afford training larger transformer networks.

The UniFormerV2 [1] is one of the most successful
transformer variant. It combines 3D convolution and spatio-
temporal self-attention to reduce the local redundancy and also
capture long-time dependencies in videos. Moreover, the incor-
poration of visual transformers (ViTs) pre-trained on the large
dataset CLIP-400M [2] significantly reduces the computation
load and enhances the spatial modeling. We therefore choose
the UniFormerV2 as our reference architecture that we further
improve. However, although using pre-trained ViT weights,
UniFormerV2 networks still need to be trained on huge video
data sets for reaching state-of-the art performance. Therefore,
our aim it to demonstrate the improvements obtainable with
our novel designs on only smaller datasets.

Motivations: A first motivation is to find a way to utilize
longer temporal sequences of videos without adding significant
computational costs. This could avoid some of the limitations
of transformer networks, which are currently not trainable
for most users and applications. A second motivation is to
introduce a bio-inspired nonlinear connection between neurons
that has been successful in image recognition.

Contributions: Given the above motivations,
• We design a novel way to leverage more temporal infor-

mation by sampling the red, green, and blue channels of
the video at different times.

20
24

 In
te

rn
at

io
na

l J
oi

nt
 C

on
fe

re
nc

e 
on

 N
eu

ra
l N

et
w

or
ks

 (I
JC

N
N

) |
 9

79
-8

-3
50

3-
59

31
-2

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IJ
C

N
N

60
89

9.
20

24
.1

06
49

96
9

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on January 23,2025 at 09:05:23 UTC from IEEE Xplore.  Restrictions apply. 



• Inspired by the Inception Network [3], we use different
sizes of 3D kernels (tubes) to tokenize the videos such
as to obtain temporal information based on different
time intervals. Such, the network obtains richer temporal
information without increasing the hidden dimensions.

• We introduce the MinBlock as a novel, bio-inspired, and
nonlinear connection layer, which is added after the 3D
embedding layer or inserted into Local UniBlocks.

II. RELATED WORK

The literature on action recognition is vast, starting with the
use of hand-crafted features together with standard classifiers
[4]. The typical hand-crafted features are Space–Time Interest
Points (STIP) [5], Histograms of Oriented Gradient (HOG) [6],
Histogram of Optical Flow (HOF) [7], Histogram of Motion
Boundary(HoMB) [7], and many more. Hand-crafted features
are easier to understand and can obtain good results on small
datasets. However, the features are not specific to a particular
dataset and therefore less effective.

Convolutional Neural Networks (CNNs), have been adapted
for videos processing since they achieved good results in
image processing. Since videos have the additional temporal
dimension, the key question is, how CNNs can learn to extract
temporal information from videos. One approach is to use
two-stream networks [8], a spatial stream to capture spatial
information from raw frames of videos and a temporal stream
to capture temporal information, e.g. by using optical flow [9].
Using Recurrent Neural Networks (RNNs) like Long-Short-
Temporal Memory (LSTM) is also a popular way to model
temporal information. Often CNNs and RNNs are combined
to capture spatio-temporal information [10]. CNNs first extract
spatial features from input frames, and then RNNs extract
temporal features, and in a next step the features would
be combined and fed into a Multilayer Perceptron (MLP)
for prediction. However, RNNs have a rather short temporal
memory and fail to capture long-range temporal information.
A straightforward approach is to extend the 2D kernels of
CNNs to 3D such that 3D-CNNs [11] can capture spatio-
temporal information by using 3D kernels. One benefit of
3D-CNNs is that the spatial 2D weights of the 3D kernels
can be pre-trained on image recognition tasks. Using this
approach, various 3D-CNNs, such as I3D [12], ResNet3D [13],
R(2+1)D [14] and X3D [15], were designed and achieved good
performance on video datasets. However, 3D CNNs have the
same limitations as RNNs, i.e., they can only model short-
range temporal information.

Along with the great success of transformers in natural
language processing tasks, transformers have also been applied
for visual tasks and have achieved impressive results. Based on
the breakthrough of visual transformers on image-based tasks,
transformers have been also applied to video and have quickly
become the state-of-the-art for almost all video benchmarks.
A variant called VTN [16] adds a temporal attention-based
encoder on top of a 2D spatial feature extraction model,
and uses a MLP for classification. Timesformer [17] em-
ployed five space-time self-attention schemes and found an

optimal accuracy-computation trade-off. ViviT [18] adopted
a transformer based on a pretrained ViT [2], and tubelet
embedding on video clips; and used four factorized designs
of spatio-temporal attention to reduce complexity. MViT [19]
uses a channel-resolution scale strategy to progressively ex-
pand the channel capacity while pooling the spatio-temporal
resolution; and a Multi Head Pooling Attention (MHPA) to
enable flexible resolution modeling. MTV [20] uses multi-
view encoders to extract tokens from spatio-temporal tubelets
of varying dimensions from the input video with a cross-view
fusion, then a global encoder to produce the final token for
prediction. Swin Transformers [21] are based on 3D Shifted
Windows to introduce cross-window connections for utilizing
the spatio-temporal locality of videos. UniFormer V2 [1]
combined 3D CNNs with transformers to capture both local
and global information and used pre-trained weights from a
ViT [2]. TubeViT [22] uses sparse and differently sized video
tubes that convert ViT encoders to efficient video models
that work seamlessly with images and videos. VideoMAE
[23] employs pre-training by randomly masking most patches
and reconstructing them pixel by pixel; this self-supervised
method improves generalization performance. The mainstream
is currently defined by multi-modality transformers, such as
InternVideo [24], OmniVec [25].

III. METHODOLOGY

In this section, we introduce the methods underlying our
novel design ideas. A new method called RGBt Sampling sam-
ples temporal RGB frames at different times to extract local
dynamics. Tubes of different dimensions are used to embed
richer temporal information into the tokens. The MinBlock
architecture implements a bio-inspired nonlinear connection
between neurons; it is here extended to video processing and
we investigate the best placement of MinBlocks within a
UniFormerV2 network.

A. RGBt Sampling

For almost all video-transformer architectures, the inputs
are obtained by sampling a number of clips from each video.
Often, a video is uniformly divided into several segments along
the temporal dimension, then one frame is randomly selected
from each segment. All selected frames then form a clip to
represent the video. This seems reasonable, since videos are
proven to have high redundancy and temporal correlation [23].

Due to the limitation of computational resources, the num-
ber of used frames is limited, but usually increasing the
number of frames will improve performance. Especially for
datasets in which the actions are motion-related (such as
Something-Something V2), more temporal information will
improve the performance a lot. To maintain a good balance
between performance and computational costs, we propose to
sample the 3 color channels at different times. The idea is to
sample N*3 frames rather than the original N frames from each
video by using Ri−1, Gi, and Bi+1 of the consecutive selected
frames instead of using Ri, Gi, and Bi from the same frame -
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see Fig. 1. Thus, we introduce additional temporal information
without increasing the input size.

Fig. 1. RGBt Sampling

B. Tokens based on Tubes of Variable Size

The state-of-the-art performance of the UniFormerV2 net-
work is largely due to using ViT weights pre-trained on
the large CLIP400 dataset. This advantage, however, also
introduces some limitations: the UniFormerV2 has to keep
the structure of the ViT, and then insert its own blocks into
the ViT structure. As a result, the first layer of 3D tokens
is quite redundant since it has to keep the same channel
dimension of 768 as the ViT in order to be able to use the
pre-trained weights. Inspired by the Inception network, we
can use different 3D kernels to tokenize the video clips and
then concatenate the different feature maps in their channel
dimension. In this case, temporal information from different
frames is fused by using differently sized tubes. Therefore, the
resulting tokens span different time frames and contain richer
information about the dynamics of the actions.

As shown in Fig. 2, we first sample a video to form an
input with dimension 32 × 224 × 224 × 3 (T × H × W × C).
Then we use three different tubes to tokenize the video, and
obtain three outputs with the same shape: 8 × 14 × 14 × 256
(T1× H1 × W1 × C1). Next, we concatenate the three outputs
in the channel dimension to form the final tokens, which have
the same channel dimension of 8 × 14 × 14 × 768 as the ViT
architecture.

C. Bio-inspired MinBlock as additional layer

As a variant of FP-nets [26], Min-Nets are inspired by end-
stopped cortical cells with units that output the minimum of
two learned filters [27], [28]. In [26] and [28] it has been
shown that the addition of Minblocks improves the object-
recognition performance of state-of-the-art CNNs, and also
makes the CNNs more robust. FP-nets and Min-Nets are
particular variants of eNets [28], i.e., networks that employ
the bio-inspired principle of end-stopping. We here generalize
eNets to video by combining not two units but three pairs of
two units. Such computations are related to optical flow com-
putation [29] and also to the way biological neurons process
motion information [30], [31]. The geometrical motivation
is based on the fact that the curvature of a 3-dimensional
manifold defines the structure of the manifold and is captured

Fig. 2. Differently sized tubes for tokenization

by the invariants of the Riemann curvature tensor based on the
sum of 3 pairwise combinations of the derivatives [29], [30].

As shown in Fig. 3, we add three 1×1×1 convolutional layers
to process the former feature maps. A 1×1×1 convolutional
layer is used as a channel-wise filter and creates a one-to-
one projection of the feature maps to extract features across
channels. Then minimum functions are used to element-wise
combine the feature maps learned by depth-wise convolutions.
The pairwise minimum operations make the neurons more
selective and more robust than classical neurons [27].

Fig. 3. The structure of a MinBlock.

As reported in [27], MinBlocks can improve the perfor-
mance of convolutional neural networks such as ResNet and
DenseNet on image datasets. Here, we insert MinBlocks
at two different places in the backbone network where the
convolutions are performed. One position is after the 3D
convolutional tokenization layer (as shown in Fig. 4), the other
is inside the Local UniBlock (as shown in Fig. 5).
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Fig. 4. Inserting MinBlock after the tokenization layer.

Fig. 5. Inserting MinBlock inside the local UniBlock.

IV. EXPERIMENTS

A. Datasets

We choose the UCF101 and SthSth32 datasets to test our
novel design ideas. UCF101 [32] is a small video dataset for
action recognition. The actions are defined to a significant
degree by spatial information. It has 101 different action
classes, and it consists of around 9.5k training videos and
3.7k validation videos. We select around 1.6k videos from

the training set for validation, and use the original validation
videos as test set.

The actions in Something-Something V2 [33] are more
related to scene dynamics and thus require more temporal
information for correct predictions. SthSth32 is a subset of
the Something-Something V2 dataset [33] containing only 32
classes selected to reduce computational costs. The resulting
data set contains about 41k training videos, 6.1k validation
videos and 6.2k test videos - see Appendix for more details.

Since pre-trained weights are not available for the RGBt
frames, we train the network from scratch. Both UCF101 and
SthSth32 are not large enough to train transformer networks to
maximum performance, we here therefore focus on the relative
differences in performance.

B. Implementation Details

We conduct all experiments on 4 NVIDIA A100 40G GPUs.
All frames are resized in a jittering scale range [240, 320]
and randomly cropped to 224x224 pixels for training. All
frames are directly resized to 224x224 pixels for inference.
Our training batch size is 256 and test batch size is 128. We
use the AdamW [34] optimizer to learn model parameters and
follow the training recipe in [1], a cosine learning rate schedule
[35] with a linear warm-up strategy for the first 5 epochs. Our
warm-up start learning rate and cosine end learning rate are
both 1e-6, and the base learning rate is 1e-5. The momentum
and the weight decay are set to 0.9 and 0.05 respectively.

C. Results and Discussion

As shown in Table I, for UCF101, using RGBt sampling
leads to a 3.2% top-1 accuracy improvement compared to
the original RGB baseline without increasing FLOPs and the
number of parameters. Using differently sized tubes with RGB
frames leads to a 6.85% higher top-1 accuracy with slightly
more FLOPs and parameters. By inserting MinBlocks we
obtain a 2.34% top-1 gain in accuracy.

TABLE I
COMPARISON OF RGB, RGBT, RGB TUBES AND MINBLOCK ON UCF101

Method #Frames Param.(M) FLOPs(G) Top1 Top5
RGB 8 123.82 157.41 43.67 69.84
RGBt 3*8→8 123.82 157.41 46.87 74.23

RGB tubes 4*8→8 125.78 160.50 50.52 79.54
RGB Min* 8 145.08 190.71 46.01 72.83
1 3*8→8 means 3*8 frames are used to form 8 RGBt frames;
2 4*8→8 means 4*8 frames are used for tokenization;
3 Min* reports MinBlock inserted inside Local UniBlock.

For the SthSth32 dataset, Table II shows that the top-1
accuracy obtained by using RGBt sampling is 5.75% higher
than with RGB sampling. The top-1 accuracy is improved
by 6.77% when using different tubes with RGB frames. The
network achieves a 1.3% higher performance gain by adding
MinBlocks.

The results shown in Table I and Table II indicate that our
designs can improve the performance for both datasets (see
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TABLE II
COMPARISON OF RGB, RGBT, RGB TUBES AND MINBLOCK ON

STHSTH32

Method #Frames Param.(M) FLOPs(G) Top1 Top5
RGB 4 123.76 78.72 44.91 77.49
RGBt 3*4→4 123.76 78.72 50.66 81.94

RGB tubes 4*4→4 125.73 80.26 51.68 83.14
RGB Min* 4 145.03 95.37 46.21 79.02
1 3*4→4 means 3*4 frames are used to form 4 RGBt frames;
2 4*4→4 means 4*4 frames are used for tokenization;
3 Min* refers to MinBlocks inserted inside the Local UniBlock.

overview in Fig. 6). RGBt sampling helps to obtain a longer
dynamic representation of videos without increasing FLOPs
and the number of parameters. Tubes of variable size can
embed richer temporal information. Inserting MinBlocks also
improves performance, presumably by making the neurons
more selective.

Fig. 6. Top-1 Accuracy improvements by our designs on UCF101 & SthSth32

We performed ablation experiments on UCF101 to show
that adding the MinBlocks improves performance and tested
two different positions of where to insert the MinBlocks.
As discussed in Section III, one position is after the 3D
convolution tockenization layer and the other is inside the
Local UniBlock. As shown in Table III, RGB sampling with
MinBlocks inserted after the tokenization layer improve per-
formance by 0.26%, while MinBlocks inserted inside the local
UniBlock lead to an improvement of 2.34% of top-1 accuracy.
In Table I and Table II, we therefore report performances for
MinBlocks inserted inside the local UniBlock.

Inspired by the Temporal Segments Networks (TSN) [36],
we used both RGB and RGBt frames and fused them at a later
stage. Table IV shows that this leads to a 4.63% performance
gain compared to the using only RGB frames and a 1.43%
top-1 improvement compared to using only RGBt frames.

TABLE III
OVERVIEW OF COMPARISON OF DIFFERENT MINBLOCKS WITH

DIFFERENT POSITIONS ON UCF101

Method Position Param.(M) FLOPs(G) Top1 Top5
RGB Min Token 125.59 160.19 43.93 70.08
RGB Min Local 145.08 190.71 46.01 72.83
1 Min indicates the use of MinBlocks;
2 Token: MinBlock inserted after the tokenization layer as in Fig. 4;
3 Local: MinBlock inserted inside the local UniBlock as in Fig. 5.

Since both RGBt sampling and differently-sized tubes im-
prove the network’s performance, we ran experiments using
both simultaneously. Results are shown in Table IV: using
RGBt sampling and differently-sized tubes leads to a 9.55%
performance gain relative to the baseline. Moreover, we also
combined variable tubes with MinBlocks; this leads to a
10.67% improvement. Finally, the combination of RGBt and
MinBlocks also leads to higher accuracy (49.08%) than both
only RGBt (46.87%) and only MinBlocks (46.01%). Hence,
the results in Table IV show that combinations of our design
elements can further improve the performance of the network.

Fig. 7. Top-1 Accuracy improvements by different combinations on UCF101

TABLE IV
EXTRA EXPERIMENTS ON UCF101

Methods Position Top1 Top5
RGB&RGBt - 48.30 74.25
RGBt tubes Token 53.22 79.60

RGB tubes & Min Local 54.04 80.63
RGBt Min Local 49.08 75.42

V. CONCLUSIONS

We have explored some novel design ideas for video under-
standing networks. The first idea, that we call RGBt frames,
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is to sample the colors at different times such as to provide
more temporal information without increasing the number of
parameters and the computational load. The second idea is to
use differently sized tubes with temporal dimensions of 1, 4,
and 8 to obtain richer temporal information. The third idea is to
introduce a novel type of neuron based on pairwise minimum
operations on traditional neurons (the MinBlocks). Ablation
experiments have been done to find an optimal placement of
the MinBlocks.

We have shown that all three design elements lead to better
classification performance on two action-recognition datasets.
Moreover, we could show that combinations of the above
design elements can further improve performance.

We have trained the networks from scratch and have focused
on relative improvements. We can, however, expect that the
ideas would lead to better than state-of-the art performance
once the networks are pre-trained and trained on large datasets.
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APPENDIX

TABLE V
THE 32 SELECTED CLASSES OF STHSTH32

Class names Index
Approaching [something] with your camera 0

Closing [something] 1
Folding [something] 2
Holding [something] 3

Holding [something] next to [something] 4
Moving [something] away from [something] 5
Moving [something] away from the camera 6
Moving [something] closer to [something] 7

Moving [something] down 8
Moving [something] towards the camera 9

Moving away from [something] with your camera 10
Opening [something] 11

Picking [something] up 12
Plugging [something] into [something] 13

Pretending to pick [something] up 14
Pretending to put [something] next to [something] 15

Pretending to put [something] on a surface 16
Pretending to take [something] from [somewhere] 17

Pushing [something] so that it slightly moves 18
Pushing [something] with [something] 19
Putting [something] into [something] 20

Showing a photo of [something] to the camera 21
Showing that [something] is empty 22
Stacking [number of] [something] 23

Throwing [something] against [something] 24
Turning [something] upside down 25

Turning the camera downwards while filming [something] 26
Turning the camera left while filming [something] 27

Turning the camera right while filming [something] 28
Turning the camera upwards while filming [something] 29

Uncovering [something] 30
Unfolding [something] 31

Selected from the 40-selected classes reported in [33], from Sth-Sth V2
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