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Abstract— This paper presents an algorithm for camera
calibration. The algorithm, inspired by work in the field of
developmental robotic on the concept of space in naive agents,
is particularly suitable for robotic applications: it is completely
unsupervised, and it does not assume any model of the camera,
making it applicable to many kinds of optical devices. Testing
of the algorithm, in a simulated environment, shows very good
results, outperforming the main unsupervised and model-free
calibration algorithm in the literature.

I. INTRODUCTION

Mobile robots are frequently faced with the problem of op-
erating in an uncertain and unpredictable environment using
complex sensory systems, such as camera, laser, and sonar.
Proper calibration of such sensors is a necessary condition
to perform many tasks. Examples include object recognition
as well as many tasks involved in navigation, such as evalu-
ating distances among landmarks and measuring robot rigid
displacements. Indeed, the problem of sensor calibration is
strongly related to the problem of equipping a naı̈ve agent
with algorithms to perform space-related measurements. Let
us consider the problem of calibrating a generic visual
system composed of different lenses and a plane surface over
which photoreceptors are placed according to some arbitrary
distribution. Calibrating this system consists in defining an
algorithm able to associate each photoreceptor to its relative
direction of sight in the external world. Equivalently, a robot
equipped with a calibrated visual system would be able to
perform distance measurements, which in this case would
consist in angular distances in the camera’s field of view
(FOV).

In recent years a variety of robotic systems have been in-
troduced which use vision sensors to perform navigation and
object recognition tasks. In these systems the calibration of
the camera is often performed before the camera is installed
on the robot. This is because of some constraints that the
calibration procedure needs to fulfill: human supervision [1]
and the use of a calibration pattern [2] are two such types
of restrictions. Moreover, many calibration techniques make
use of models of both the camera and the distortions induced
by the lenses [3], [4], [5], limiting their application just to
systems that are described by these models.

These restrictions are in contrast with one of the important
aims of current robotics research: to create robots which are
as autonomous as possible. A calibration algorithm for these
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robots should be: 1) completely autonomous: the calibration
should be performed by means of a completely unsupervised
algorithm; 2) as general as possible: the calibration algorithm
should be applicable to a wide range of optical devices and
3) able to work in any kind of environment. Few techniques
([6], [7], [8]) with these characteristics have been proposed
until now. These techniques are mainly inspired Kuipers’
[9] work in developmental robotic. Kuipers’ calibration algo-
rithm estimates the distances among the directions of sight of
photoreceptors by evaluating the similarity among the input
values of these photoreceptors. The implied assumption in
Kuipers’ algorithm is the following: for a given pair of areas
in the camera’s FOV, the greater the distance between them,
the greater the difference in the corresponding sensory input
to the camera. This assumption, although locally true, is not
a global property of space, implying that Kuipers’ algorithm
will only work properly when the distances to be evaluated
are small compared to the speed of change in the image in
the camera’s FOV.

In this paper we propose a new method for camera
calibration that fulfils the three requirements listed above.
This method is inspired by work in developmental robotic on
the emergence of the concept of space in naı̈ve agents [10],
[11]. In particular, two works by Terekhov and O’Regan [12],
[13] show how a naı̈ve robot equipped with a simple visual
system can be able to measure what physicists commonly
call rigid displacements. The key characteristics of Terekhov
and O’Regan’s algorithm and its main difference from that
of Kuipers, is the importance given to camera movements.
In their algorithm, camera movements are fundamental to
how the agent defines rigid displacements, in the sense that
the agent can define and recognize rigid displacements in its
own coordinates system (here, the set of photoreceptors of
the camera) once it notices that the input sensed by a given
photoreceptor i before a specific displacement d will always
be sensed by another photoreceptor j after the displacement.
This characteristic is a distinguishing property of space and
of rigid displacements in the sense that it is completely
independent of the environment and the particular charac-
teristics of the camera. The main contribution of this paper
consists in showing how this property can be exploited to
implement a camera calibration algorithm, and demonstrating
the advantages of the proposed calibration compared to that
of Kuipers.

The rest of the paper is organized in the following way. In
section II the proposed calibration algorithm is explained in
detail together with a description of our implementation of
Kuipers’ method. Both techniques were tested by calibrating
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Fig. 1. (a) Camera calibration setup. The camera is calibrated by taking pictures of planar images presented on a plane parallel to the plane of the camera
photoreceptors. The camera movements considered are translations in this plane. The dotted red lines delimit the camera’s field of view (FOV). In the
case shown here the two FOVs overlap. (b) Camera model. The grey plane on the left represents the camera’s photoreceptor plane. The photoreceptors
are indicated by red crosses. The blue cylinder in the center of the figure represents the camera’s lens. The red dotted line is the camera’s optical axis.
The transparent plane on the right is the one over which the pixels’ lines of sight are projected. The red solid line represents the direction of sight of a
particular photoreceptor, which is deflected by the lens.

a pin-hole camera and a fish-eye camera in a simulated
environment. Details on the simulated experiments and the
results of the two calibrations are presented in section III.

II. DETAILS ON THE ALGORITHM

Before formalizing the problem of camera calibration,
let us clarify the robotic setting we are considering. Let
us imagine a naı̈ve agent scanning a planar image with
a camera and assume that the robot is able to perform
rigid displacement of the camera in front of the observed
image (see figure 1(a)). Now let us consider the robot to
be completely unaware of the camera model, in the sense
that the agent does not know anything about the lenses of
the camera and how they distort the image of the world.
Moreover, let us assume that the agent is able to measure
the displacements of the camera using an odometry sensor
which is quite noise. Clearly the presence of the distorting
lenses means that the image captured by the camera is not
an isometric representation of space. The distance between
the projections of two luminous spots may therefore vary.

Let us consider what happens when the camera performs
a small rigid displacement such that the FOVs of the camera
before and after the movement overlap. In this condition,
the input that was sensed by some photoreceptor before the
displacement would be sensed by some other photoreceptor
after the displacement. The agent could store these coinci-
dences by defining a map, in the photoreceptor set, coupling
photoreceptors that sensed the same input before and after
the displacement. W will call such maps j functions: one
such map could be univocally associated to each of the
possible rigid displacements of the camera in the world. In
fact it will be always the case that different movements will
be associated to different j maps. Moreover, for a given
movement of the camera the agent will discover the same
j function, even if the displacement starts from a different
initial position and for a different observed image. In the next
paragraph we will describe the algorithm for evaluating the
j functions and how these function can be used to estimate
the distances among photoreceptors.

Once the distances among the photoreceptors’ directions
of sight have been estimated, the problem of finding these
directions can be considered a problem of metric embedding,

frequently referred as multidimentional scaling [14]. In the
following paragraph we will quickly state the problem of
camera calibration in a more formal fashion; this is followed
by detailed presentation of our implementation of Kuipers’
algorithm and our own technique.

A. Camera Calibration
The problem of camera calibration can be stated in the

following way. Referring to figure 1(b), let us call P =
{pi}n

i=1 the set of two-dimensional vectors whose compo-
nents are the coordinates of the photoreceptors in a Cartesian
coordinate system fixed to the camera’s photoreceptor plane.
Considering a plane facing the camera, orthogonal to the
camera’s optical axis, and providing it with a Cartesian
coordinate system, we can define S = {si}n

i=1 as the set of
directions of sight for each photoreceptor. Each si is a two-
dimensional vector whose components are the coordinates
of the intersection between the i-th photoreceptor’s direction
of sight and the plane facing the camera (see figure 1(b)).
Finally let us call r(si,s j) the Euclidean distance between
the directions of sight of the i-th and j-th photoreceptor
evaluated on the plane where si and s j are defined.

The camera calibration problem consists in estimating,
for each photoreceptor pi, its relative direction of sight si.
One general solution for this problem consists in: 1) defining
a dissimilarity function µi j = µ(pi, p j) on the set P , 2)
applying a multidimensional scaling algorithm which returns
the set fS as the result of the following minimization:

fS = min
f ,s01,...,s

0
n

Âi j

⇣
r(s0i,s0j)� f (µi j)

⌘2

Âi j r
⇣

s0i,s
0
j

⌘2 ; (1)

where f is a monotonic functions. Depending on how µi j is
determined, different approaches result.

In the two following paragraphs we will describe how the
dissimilarity µ is defined and computed in both Kuipers’
algorithm and ours. In describing the two algorithms, we
will refer to the experimental setting represented in figure
1(a). The camera is considered to be set in front of an image
which lies on a plane perpendicular to the camera’s optical
axis. References to camera movements will be to translations
of the camera in the camera’s photoreceptors plane, i.e. in a
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Fig. 2. The coordinates of the estimated directions of sight es for each photoreceptor in the square photoreceptor grid (size 50) of a pin-hole camera((a)
and (c)) and a fish-eye camera((b) and (d)). The top row presents the results of our calibration methods with 10% noise in momvement estimation, the
bottom row shows the results of Kuipers’s algorithm. The coordinates es were rescaled in order to yield a maximum value of r(esi,es j) of approximately 50,
and the points were rotated in such a way the side of the estimated grid approximately parallel to the reference system.

plane parallel to the image. More details on the images used
for the calibration are given in the Implementation details
section.

B. Correlation-based algorithm

Here we have named the calibration technique obtained
using Kuipers’ definition of dissimilarity µ the correlation-
based algorithm. Our main reference in implementing
Kuipers’ algorithm was [15]. Defining X(t) = {xi(t)}n

i=1 as
the values sensed by all photoreceptors at time t, Kuipers’ al-
gorithm consists in collecting different X(t) at different times
while moving the camera around. In the setup described
in 1(a), we collected a series of vectors [X(1), . . . ,X(T )],
by performing T random translations of the camera in
the photoreceptor plane. The dissimilarity µ (from now on
µC, with the superscript C standing for correlation-based)
between two photoreceptors was then estimated as:

µC
i j = µC(pi, p j)

def
=

1
T

T

Â
t=1

|xi(t)� x j(t)|
!
. (2)

Here the distance between the directions of sight of two pho-
toreceptors is estimated by considering the mean difference
over time in the input sensed by the photoreceptors. The
underlying assumption is that two photoreceptors pi and p j,
with similar directions of sight si and s j, sense approximately
the same input. The greater the distance between si and
s j, the more different will be the inputs received by the
photoreceptors. Clearly this assumption holds if the observed
image is smooth enough, or, more precisely, if the distances
among the directions of sight to be estimated are small
compared with the speed of changing of the observed images.
When the distances become larger than this, the estimate µC

reaches a constant value and becomes distance independent.

C. Displacement-based algorithm
In this paragraph we will propose our definition of dissim-

ilarity µ - hereinafter µD - describe the algorithm to evaluate
it. We will refer to this algorithm as the displacement-based
calibration algorithm. Let us define D as the set of all rigid
displacements the camera can perform such that at least a
portion of the FOV of the camera’s FOV before the dis-
placement is still in the camera’s FOV after the displacement.
Let xi be the input sensed by the i-th photoreceptor before
performing the displacement d, and let yi be the input sensed
by the same photoreceptor after performing the displacement
d. We collect the set of data Xd

i =
�

xk
i
 M

k=1 and Y d
i =

�
yk

i
 M

k=1,
for all of the camera’s pixels by performing M times the
displacement d. We expect that the closer the direction of
sight si of the i-th photoreceptor before the displacement is
to the direction of sight s j of the j-th photoreceptor after the
displacement, the more similar the sequences Xd

i and Y d
j will

be. We associated a bijective function jd : P ! P on the
photoreceptors set to each displacements d 2 D as follows:

jd(pi) = argmax
p j2P

|corr(Xi,Yj)|; (3)

where corr(Xi,Yj) is the correlation between the two se-
quences of photoreceptor values.

Let us now see how we can use j to estimate the distances
between the directions of sight si,s j of two photoreceptors.
The jd function couples together photoreceptors whose
respective directions of sight s happen to coincide before
and after a the displacement d. For this reason we would like
µD(pi, p j) to be the same for all the pairs of photoreceptors
that are associated by the same j function. The dissimilarity
µD we propose is the following:

µD
i j = µD(pi, p j)

def
= ||jd || where jd(pi) = p j. (4)



(a) Pin-hole: Displacement-based algorithm (b) Fish-eye: Displacement-based algorithm

(c) Pin-hole camera: Correlation-based algorithm (d) Fish-eye camera: Correlation-based algorithm

Fig. 3. The dissimilarities µD
i j and µC

i j versus the distance r(si,s j) for a pin-hole camera and a fish-eye camera with a photoreceptor grid of size 40. The
results on the displacement-based algorithm refer to the calibration condition where the displacements were corruped with Gaussian error.

The norm used || · || is such that the identity function has a
zero norm. We decided to use the following norm here:

||jd ||= argmax
p j2P

||jd(p j)� p j||. (5)

The dissimilarity function µD has some interesting property.
It is symmetric, as far as, we define, for each jd function
for the displacement d, a j�d for the opposite displacement.
Moreover, if we build the set of j functions in such a way
that, for any three photoreceptors in P there is always one or
more j functions which maps any of the three photoreceptors
onto the other, then the triangular inequality will hold for µD.
We thus have that, if the set of j functions is properly built,
then µD is actually a metric on P .

III. EXPERIMENTS AND RESULTS

A. Implementation details

The displacement-based and correlation-based algorithms
were both tested by calibrating two kinds of cameras: a pin-
hole camera and a fish-eye camera. The camera calibration
setup is described in the previous section and is depicted
in figure 1(a). The calibration algorithms were tested on a
camera equipped with a square grid of photoreceptors of
different sizes, with the number of photoreceptors per grid
side N ranging form 20 to 70.
The images used for the camera calibration were grayscale
images composed of random patches. The smoothness of the
images used was varied during the calibration within a range
compatible with that of an off-the-shelf camera1.
As stated in the previous paragraph, it is possible to associate
a j function to each camera movement, where the camera’s
FOV before and after the displacement partially overlap. The
displacements used for the calibration were translations of
the camera in the photoreceptor plane. Considering that the
size of the grid of photoreceptors is L = N · l, where N is the
number of photoreceptors per size and l is the step of the
grid, a set d0 = {�L,�L+ l,�L+2l, . . . ,L�2l,L� l,L} can
be defined. The set of displacements used for the calibration

1The smoothness of a gray-level image taken with a off-the-shelf camera
can vary widely depending on the resolution of the camera and the mean
distance to the objects in the scene, but, the mean absolute derivative for
these images usually ranges in the interval I = [0.01,0.05].

was D = d0 ⌦d0, where the vectors in the set D are defined
in relationship to a reference frame with origin at the center
of the photoreceptors grid and axes parallel the sides of
the grid (see figure 1(b)). In the correlation-based algorithm
inspired by Kuipers, in order to collect the inputs to the
photoreceptors to evaluate distances according to eq. 2, we
moved the camera through 5000 displacements randomly
drawn from the set D. Every 250 movements a new image
was shown to the camera.
In the displacement-based method a j function was associ-
ated to each of the displacements D according to equation
3. In order to evaluate the correlation among photoreceptor
values, the same camera displacement was repeated 20 times.
Each time the movement was repeated a new random image
was shown to the camera. In displacement-based calibration
the camera must be moved multiple times through the same
displacement. This could be a quite restricting condition in a
real robotic setting, where the robot displacement is affected
by error. We thus chose to simulate the camera calibration
in two different conditions. In the first setting the camera
displacements were not affected by any error, while in the
second setting a Gaussian error of 10% was applied to the
norm of the displacement.

B. Results

Once the dissimilarities, µC and µD, among photorecep-
tors have been evaluated according to the equations 2 and 4,
we applied multidimensional scaling (STRESS 1) to obtain
for each photoreceptor pi the estimated coordinates esi. In
displaying the results we sometimes multiplied the estimated
direction of sights by a constant factor a or isometrically
transformed the esi (in particular rotations were used). This
can be done since linear warping and isometries are both
symmetries of the camera calibration problem. An extensive
treatment of all the symmetries of the problem is given in
[6] and [16].

Our first result consists in showing, in figure 2, the
coordinates esi for the pin-hole and fish-eye cameras for
a retina of size 50. Figures 2(a) and 2(b) illustrate the
calibration obtained with the displacement-based method in
the calibration condition where the camera displacements
were subject to 10% error. The results with zero error were



TABLE I
MEAN SCALED RELATIVE ERROR Esr EVALUATED FOR THE DISPLACEMENT-BASED CALIBRATION METHOD. THE RESULTS ARE EXPRESSED IN

NUMBER OF PIXELS.

Grid Size Pin-Hole Fish-Eye Pin-Hole (Err. 10%) Fish-Eye (Err. 10%)
20 1 ·10�3 ±1 ·10�3 0.1±0.1 0.02±0.02 0.2±0.2
30 6 ·10�4 ±7 ·10�4 0.1±0.1 0.02±0.02 0.2±0.3
40 4 ·10�4 ±5 ·10�4 0.2±0.2 0.04±0.04 0.6±0.7
50 5 ·10�4 ±5 ·10�4 0.2±0.2 0.04±0.04 0.7±0.8

better and are not illustrated. Figures 2(c) and 2(d) shows the
results of the calibration obtained with the correlation-based
algorithm. The main reason why our method outperforms
Kuipers’ is that our method exploits the fact that, when an
agent performs a rigid movement, if two sensor happen to be
in the same relative position with respect to the environment
before and after the movement they will sense the same input.
This is an actual property of space in the sense that it is
independent of both the agent’s sensors and the particular
environment. In Kuipers’s algorithm this is not the case:
evaluating distances by comparing the values sensed by
different sensors makes the distance evaluation dependent
on both the environment and the sensors. Again, in this
case distance estimation is accurate as long as the distances
among photoreceptors are sufficiently small compared to the
rapidity of change in the observed image. When the grid
of photoreceptor is quite big and the image change quite
rapidly, this condition is no longer satisfied, resulting in poor
distance estimation. Empirical evidence for these assertions
can be seen in figure 3, where we plot µD

i j and µC
i j against, the

real distances among the relative directions of sight, r(si,s j).
The figure presents the results on both the pin-hole (3(a) and
3(c)) and fish-eye (3(b) and 3(d)) cameras of size 40. It is
clear from the figure that for bigger distances the value of
µC is more or less constant, implying that a small error in
the estimation of µC

i j leads to quite big error in the estimation
of r(si,s j). This is not the case for the displacement-based
algorithm, where the values of µD increase monotonically as
a function of distance.

In order to evaluate the quality of the embedding, that is
how accurate the estimation of distances among directions
of sight was, we calculated the mean scaled relative error
(MSRE from now on) Esr, which is defined as follows:

Esr = min
a>0

1
n2

n

Â
i, j=1

|r(si,s j)�ar(esi,es j)| (6)

In this equation esi are the estimated values of the directions
of sight obtained with our algorithm. The distances among
these are compared with the distances among the true values
true values of the directions of sight si. The minimization
over the multiplicative factor a is due to the fact that, as
previously explained, linear warping is a symmetry of the
camera calibration problem. The values of the MSRE for
our calibration methods, expressed in number of pixels, are
reported the table I. MSRE was calculated for the different
sizes of the photoreceptor grid for the two kinds of cameras
and in the two calibration conditions, both for the condition

with no error in camera displacement and when an error
of the 10%. It is worth noting that the displacement-based
algorithm performed well with a values of Esr no greater then
0.7 pixels. This is quite meaning given that the maximum
displacement considered for a photoreceptor grid of 50 was
about 70 pixels (the size of the diagonal of the grid) with an
error of about 7 pixels on the displacement. Finally, in figure
4 we present some pictures taken with the fish-eye camera
before and after the calibration. These figures were obtained
by calibrating the fish-eye camera with a photoreceptor grid
of size 70. The results in the figure are from the calibration
condition with no error added to the camera displacements.
The original image shown to the camera is displayed in
the upper left corner in all three figures (4(a), 4(b) and
4(c)). The image in the photoreceptor plane obtained with
a non-calibrated fish-eye camera is shown in the upper right.
The lower part of the three figures shows the images as
taken with fish-eye camera calibrated with the displacement-
based method (bottom left) or the correlation-based method
(bottom right).

IV. CONCLUSIONS

Here we have presented a calibration technique with some
very interesting characteristics that make it appealing for
robotics. It is a completely unsupervised calibration tech-
nique which does not require a model of the camera so it can
work for a big variety of optical devices. The calibration can
be performed everywhere, with no requirement of particular
calibration patterns or a particular environment. The smooth-
ness of the images used in this work was similar to those of
pictures taken with an off-the-shelf camera. Note, of course,
that the smoothness/sharpness of images should not represent
a constraint for our algorithm. In fact, since distances are
evaluated by coupling photoreceptor which sense the same
input before and after a displacement, our algorithm should
work even when the calibration images are changing very
quickly; possibly even random noise pictures could be used.
Another important advantage of our algorithm is that it could
potentially work with a camera with slightly different gain
functions for each photoreceptor. This is because, in our
algorithm the j maps are built by associating photoreceptors
with the best-correlated inputs. It is reasonable to believe that
if the correlation between the inputs of two photoreceptors is
the greatest, it will remain the same even if we systematically
modify the inputs of the two photoreceptors using slightly
different gain functions. This prediction will be precisely
investigated in future work.



(a) (b) (c)

Fig. 4. In the upper left corner of (a), (b) and (c), the original images that the camera was pointing at. In the upper right, the images in the plane of
photoreceptors for a non-calibrated fish-eye camera. In the lower left corner, the result of calibration with the displacement-based method, and in the lower
right with the correlation-based method. Both pictures are drawn from the calibration of a fish-eye camera with a grid of photoreceptors of size 70. The
results relative to the displacement-based algorithm are for the calibration condition where the displacements were not corrupted by any error. The camera,
as stated above, was calibrated using grayscale images; here the results of the calibration are shown with coloured images to better illustrate the differences
in the results.

The calibration technique we propose was tested in the con-
dition of a camera performing particular kinds of movements,
namely rigid displacements. These comport difficulties in
comparing distances along the two directions as well as the
angles between them and could be overcome by evaluating
the j functions also for camera rotations. Using just rigid
displacements can hold only as an approximation for many
real robot settings, but this approximation is not as brutal
as it may seem. The movements of cameras used in robot
applications are frequently rotations rather then translations
as in the case of pan-tilt cameras. But it is definitely the
case that the former can be good approximations of the
latter for small angle rotations, which after all are the only
kind required for our calibration algorithm. Moreover, the
fact that our algorithm performs well even when the camera
displacement is corrupted with error is promising for the
success of the algorithm in a real setting.
The actual main limitation of our algorithm surely lies in its
computational cost (the biggest retina calibrated in this paper
has about 5000 photoreceptors while nowadays camera have
millions of photoreceptors). In fact, establishing a precise
calibration requires the evaluation of a quite large number of
j functions. Furthermore, evaluating each of the j functions
requires repeating the same movement a certain number of
times. An additional study must be performed to understand
under what condition and to what extent the number of
movements performed affects the quality of the j functions.
In any case, the solution to the computational cost problem
of our algorithm could even reside in the application of
a hybrid algorithm, with the combined application of our
technique and Kuipers’ method. In such a mixed method our
technique could be applied, for example, to only a subset of
photoreceptors, perhaps a set which forms a regular grid with
large step size. The evaluation of distances among nearby
photoreceptors could be done using Kuipers’ method.
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