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by a naive agent from sensorimotor
invariance and proprioceptive
compensation
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Abstract
In this article, we present a simple agent which learns an internal representation of space without a priori knowledge of its
environment, body, or sensors. The learned environment is seen as an internal space representation. This representation
is isomorphic to the group of transformations applied to the environment. The model solves certain theoretical and
practical issues encountered in previous work in sensorimotor contingency theory. Considering the mathematical
description of the internal representation, analysis of its properties and simulations, we prove that this internal repre-
sentation is equivalent to knowledge of space.
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Introduction

Sensorimotor theory

Sensorimotor contingency theory argues that the acquisi-

tion of space knowledge in the brain is a result of the

interaction between perception and body movement. ‘‘Pas-

sive perception’’ alone is not sufficient to create a repre-

sentation of space, instead many authors propose ‘‘active

percetion’’ in which action is a necessary component of

perception.1,2 The connections between sensory inputs and

motor outputs are defined by a general set of rules whose

properties depend on the characteristics of the surrounding

space.2–8 The agent is able to use its body to compensate for

sensory changes. In response to sensory changes, which are

a result of changes in the environment or body movements,

the agent will move to counter the effect of the initial

changes. Poincaré4,5 described the compensation algorithm

as the capability of the body to compensate for a transfor-

mation of the environment. Nicod6,9 applied the concept of

compensation to auditory signals and stated that a space

representation can emerge when body movements are used

in interaction with the auditory system. More recently,

O’Regan and Noë2 used psychological arguments obtained

from experiments on humans and animals to clearly define

the sensorimotor contingency approach and outline its

expectations. Philipona et al.7,8 performed physical simula-

tions, modeling, and analyses of the tangent spaces of the

manifold of sensorimotor interactions. These studies

showed that it is possible to retrieve the dimension of the
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learned space for any sensory and motor dimensions. The

algorithm of Philipona retrieved the dimension of the group

of transformations in which their agent moved without any

prior knowledge of it and without knowledge of the sensory

and motor dimensions. Laflaquiere et al.10,11 implemented

this type of algorithm in order to retrieve the dimensional-

ity of the environment in which a robot moved its arm.

In a psychological study, Aytekin et al.12 demon-

strated that humans use a sensorimotor approach to learn

space from auditory stimulation. The group properties

and the metric of the auditory space were shown to be

captured by the human brain, thanks to sensorimotor

interactions. Terekhov and O’Regan13,14 showed that

an agent using internal compensation movements could

acquire external movements and the metric without

knowledge of the environment.

The present article extends the field of sensorimotor

research by demonstrating a naive agent that learns the

group properties of space and provides new insights into

theoretical results. The naive agent creates a usable repre-

sentation of space and retrieves its fundamental properties

such as its group operation. The term ‘‘naive’’ indicates

that before learning the agent had no awareness of space or

its properties. Using compensation, this agent is able to

learn an internal representation of space. We extend the

Laflaquière and Terekhov models, merging their algo-

rithms. Our results remove all ambiguity in the mathemat-

ical representation of space and extend the usability of the

representation. This representation is itself a group and is

isomorphic to the group of compensable transformations.

The agent measures sensory signals from the environment,

which correspond to changes in its perception. The change

in perception can be due to movements generated by the

agent (internal movement, external movement, or both), a

change in the environment (a transformation applied to the

sources of signal), or to a combination of these. The agent

will act to compensate for these changes in order to

retrieve the same signal it was experiencing before the

change.

In this article, the agent’s proprioceptive capabilities

alone are used to create a full representation of its environ-

ment without any a priori knowledge of it. This represen-

tation has the same properties as its embedding space ðR2Þ.
The learning algorithm is based on the notion of compen-

sation defined by Poincaré (Poincaré, 1898, 1902) for the

visual perception of space.

In order to prove that our agent has learned a represen-

tation of space, we use the following points:

� The agent captures invariant proprioceptive domains

in a stationary environment, which provide an inter-

nal calibration for its own movements.

� The agent learns the transformations of the environ-

ment by compensable movements (movements of

the foot, retina, or both), which link environment

transformation to body transformation.

� The agent can distinguish between learned transfor-

mation and non-learned transformation (compensa-

ble and non-compensable).

� The agent captures the properties of learned

transformations.

� The group properties for combinations of external

movement are reproduced by the agent’s internal

representation. When the agent uses its internal rep-

resentation to predict or reproduce a combination of

movements, the combinatory effect is preserved.

� The internal representation is isomorphic to the

group of transformations.

� A handicapped agent that cannot apply the algo-

rithm (no sensory matching) cannot learn the com-

pensable movements and therefore cannot learn the

space representation.

Using all of the above, we show that the internal repre-

sentation is equivalent to a representation of space.

In the next section, we describe the agent in detail. We

describe its sensory system and body. We explain the algo-

rithm applied during learning and the theoretical require-

ments for proof that the agent learned a full representation

of space. Next, we present the computational logic and

calculations that have been applied to the agent. We present

the solution used to validate our theoretical claims and

discuss the effects studied. We then present our theoretical

results and simulations. We compare the learned compen-

sable transformations to noise and non-compensable trans-

formations. We also show the proof of the group properties

learned by the agent and its internal representation of space.

Taking the example of an agent with a particular form of

handicap, we show how this is reflected in terms of the

representation of space. Finally, we discuss the results of

the model and present future work.

Theoretical presentation

The environment

The environment is composed of a number of light sources.

Signal propagation obeys physical laws and is generated by

a simple ray tracing algorithm for each source. The envi-

ronment and its state is defined by �. The different states of

the environment are noted with the q subscript giving �q to

describe the environment in state q. All the possible states

belong to the set " : �q 2 ".
The environment can be subject to transformation T and

the environment will then be in a different state.

Tð�qÞ ¼ �q0 ;T : "! " (1)

The transformation of the environment � can be rigid

transformation (translation and rotation), geometrical

transformation (scaling), or any type of transformation

(noise, intensity change, and random movement of the

sources of light). When subject to a rigid transformation,
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the effect applies on all the sources of signal with a dis-

placement of their locations in the physical space.

Sensations of the change in the environment

The agent has a retina, which is sensitive to the source of

lights. The retina is a detector composed of visual cells,

which are sensitive to the sources depending on the source

position relative to the sensor. Let s 2 S describe the sen-

sorial activity of the agent. The dimension of S is the

dimension of the retinal signal given by the number of

visual cells. An example of this type of sensory detector

is shown in Figure 1 . The signals are measured by the

agent’s detector. The detectors are sensitive to a signal

emitted by the sources and the signal variation on a detector

is directly linked to the source’s localization in the space

surrounding the agent. The signals captured by the detector

depend on location with a function

s ¼ �ðX r; �Þ (2)

where X r is the relative position of the retina in the agent

and � is the environment’s effect on the agent (which

depends on the absolute position of the agent in the envi-

ronment). The � function is a binary relation between the

environment and Rm where m is the dimension of the

signal-measuring sensor �ðX r; �Þ ¼
PN

i¼0�ðX i � X r; �Þ
where the Xi is the lights’ location in the environment

relative to the retina. It is important to note that the signal

function must be continuous and invertible.

Invertibility can be ensured by considering a sufficiently

complex detector, that is, one composed of sufficient num-

ber of retina cells. We do not suppose we have a full

domain where the function is invertible, however, in our

simulation, we only got limitations with very few cells in

the retina and this showed interesting defects in the space

representation. Defects in the space representation obtained

using an insufficient number of cells will be discussed later

in the article. (The change in the environment can generate

sensory variation in the agent.)

Agent description

The agent is a simple body composed of two moving parts:

a foot which generates body displacements and a retina

which can be moved inside the body (Figure 2). For sim-

plicity, we present, in the Figure, a one-dimensional envi-

ronment, however, our agent was validated and tested in a

two-dimensional environment. The proprioceptive state of

the agent p ðp 2 RnÞ is defined by combining the retina

proprioceptive state pr and the foot motor activity pf as

p ¼ ðpr; pf Þ

?

2 P ¼ PR � PF . Where PR and PF are the

sets of all proprioceptive values. The foot proprioceptive

state pf 2 PF can allow the agent to move both forward and

backward.

In the following part of the article, we are using the

subscripts q and q0 in order to distinguish the state of the

studied objects. pq and pq0 are the proprioceptive states of

the agent corresponding to two states q and q0. We are also

using this notation to distinguish the states of the environ-

ment �q and �q0 . Using such a simple agent allows us to use

precise mathematical tools to clarify the properties of space

perception. Space and compensable transformations, as

proposed by Poincaré,3 are central to our study and are

discussed in the two next sections.

The movements of the agent are of two kinds: internal

when the agent moves its retina and external when the

agent moves its foot. The effect of the movement of the

retina is related to the proprioception of the retina pr and

the relative position of the retina in the agent is given by a

function �

X r ¼ �ðprÞ (3)

The proprioception of the foot pf generates external

movement. The body of the agent is fully displaced when

the agent moves its foot. The movement of the foot is given

by the function �

Figure 1. The signal measured by each visual cell depends on the
distance between the sources i located at Xi and the retina located
at Xr . The set of signals defines the visual signal vector, which
depends on the number of cells in the retina. The signal is given by
the function �ðXr; �Þ ¼

PN
i¼0 �ðXi � Xr; �Þ, where � is the effect

of the global position of the agent in the environment.

Figure 2. The agent is in a physical space and can move in any
direction (left or right along X in this figure) by controlling a foot.
The foot displacement is associated with the external proprio-
ception pf . The agent has a retina which can move freely inside the
body. The retina position depends on the internal proprioception
pr . The environment is composed of a number of lights which can
move together (not individually) in any direction.

Clec’H et al. 3



� Agent ¼ �ðpf Þ (4)

Applying the effect of �ðpf Þ to the agent is equivalent to

a geometrical transformation to its body location (rotation

and translation). When the foot proprioceptive value pf is

equal to 0, the agent is at rest.

� and � are bijective and thus are invertible func-

tions. This bijectivity is a particular case that can be

generalized.15

The absolute position of the retina in the evironment can

be given by the position of the agent in the environment and

the relative position of the retina in the agent X r. While the

agent doesn’t know its absolute position, it can act by

changing its retina position with the movements of its body.

Only foot movements generate any displacement of the

body. Foot movements are not bounded, while the retina

movement is solely within the body of the agent. While this

is a strong hypothesis, it is necessary for purely mathemat-

ical reasons. However, the limits of this hypothesis are not

tested as we typically consider small movements centered

on the agent’s body and only small foot movements are

needed to compensate.

Compensable transformation

In 1895, H. Poincaré wrote his work on space and geome-

try.3 He defined geometry in relation to a totally naive

brain, which has access to its sensorimotor flow only. The

geometry can be inferred by considering certain types of

sensory changes. Of all the possible sensory variations,

some occur without motor commands and, therefore, must

be related to external changes. Some changes that are

related to external rigid displacements can be compensated

by the agent’s motor commands. In this case, the sensory

variations due to the external changes and the motor com-

mands are opposite, so that the initial and final sensory

states are identical. This is what is meant by compensable.

Because the function linking the positions of light sources

and the agent sensor signal is invertible, for a stationary

agent, we can state that for every change of the environ-

ment, the sensory perception of the agent also changes.

When considering different positions of the agent in the

environment with identical values of the proprioceptive

state vector p (identical retina position and foot activity),

the signals measured by the sensor are necessarily different.

In the general case, the agent is unable to infer its sensorial

variations from variations in its proprioceptive state. How-

ever, compensable transformations can be thought of as a

type of sensorial variation due to external transformations

that are compensated by a specific movement of the agent.

These compensable transformations can be detected by the

agent. According to Poincaré’s proposition, the set of com-

pensable transformations is a group and is equivalent to the

group characterizing the external geometric space. By

experiencing the compensable transformations, the agent

can capture the most important properties of the (Eucli-

dean) space in which it moves.

Capturing the set of compensable
transformations

In this section, we introduce the formalism for compen-

sable transformations by defining � as a set of binary

relations ’T that will allow us to build a representation

of the group of compensable transformations T . We

consider two cases: auto-compensable transformations

in a stationary environment and compensable transfor-

mations more generally. Making this distinction allows

the set of ’T to map specific transformations T unam-

biguously. Initially, the ’T functions were proposed by

Terekhov et al.13,14 They are built from a catalog of all

compensable transformations the agent detects. By

matching identical sensory inputs before a change and

after compensation, ’T functions map proprioception

observed before a change to proprioception observed

after the compensation.

For a given displacement T of the environment, the

agent will recover the same function ’T for both different

initial positions and different environments. As shown by

Terekhov and O’Regan,14 the functions ’T provide the

agent with the notion of space.

(In this article, the ’T are not functions but binary rela-

tion as they are not unique mappings from P toP. However

they are real functions in the article of Terekhov.)

Compensable transformations

Let ðs; pqÞ 2 S � P describe the state of the agent in the

environment. After a given rigid displacement of the envi-

ronment (lights moving in our case), the agent’s new state

is ðs0; pqÞ. Such a transformation is compensable if there

exists a new proprioceptive state pq0 corresponding to a

displacement of the agent in the environment and the

resulting state is ðs00; pq0 Þ with s00 ¼ s. In other words, the

agent has moved in order to recover the initial perceptual

state. Given a compensable transformation of the environ-

ment T , the function ’T is the mapping between P and

itself such that for all proprioceptive states pq 2 P, one has

pq0 ¼ ’T ðpqÞ, where pq0 is the new proprioceptive state

which compensates for T

’T : P ! P; pq ! pq0 ¼ ’T ðpqÞ (5)

This definition does not depend on the perceptual state s.

This is a consequence of the definition of compensable

transformations. Cases where s00 ¼ s can be found as long

as the agent can evaluate its sensory flow. Difficulties arise

when discussing how an agent can detect such coincidences

from the sensorimotor flow alone, without a priori knowl-

edge. How can it infer for a set of ðpq; pq0 Þ that they corre-

spond to the same ’T ? That is, how does it determine that

they compensate for the same unknown external
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compensable transformation T? Terekhov and O’Regan

proposed a solution14 whereby they collected all the agent

compensations corresponding to the same external trans-

formation T and repeated for all other values of T . How-

ever, as the agent itself does not have access to T , this

solution is somewhat artificial. In this article we propose a

new solution to this problem by introducing the notion of

auto-compensable transformation. In this case, the envi-

ronment is stationary. Since this is not known by the

agent, we must also introduce the identity transformation

of the agent’s body.

(As mentioned earlier, while the ’T are functions in

case of the Terekhov’s article, in our case there are not.

However, when we keep the foot proprioceptive state con-

stant before and after the compensation (respectively the

retina proprioceptive value before and after the transfor-

mation of the environment), the compensation ’T

becomes a function as there is a unique retina state com-

pensating the applied transformation (respectively for the

foot). When the environment is stationary, ’ 0 is a func-

tion (see next section).

In the article, we will then use the term of function even

if it can be seen as an inaccurate term.

Auto-compensable transformation

An auto-compensable transformation is the displacement

of a part of the agent’s body (e.g. retina), which compen-

sates for sensorial variations induced by the movement of

another part of the agent’s body (e.g. foot displacement).

The distinction between auto-compensation and compen-

sation more generally is that the transformation T is fully

determined by the agent in the case of auto-compensation.

The agent can then build a set of functions ’T , which can

be used as internal references to represent external com-

pensable transformations. In order to avoid any confusion

between the agent’s transformations T and external trans-

formations, the environment must remain stationary when

determining the function ’T . However, the agent cannot

know whether the environment is stationary or not. This

problem has been discussed by Roschin and Frolov,16

Laflaquière,17 and more recently by Marcel et al.15 with-

out finding a fully satisfactory solution. We will address

this by introducing the identity transformation. The iden-

tity transformation can be considered a simple saccadic

movement. After a displacement of the agent’s foot, the

sensorial state of the retina changes. The agent then

recovers the initial proprioceptive state of the foot by

performing the exact inverse displacement of the foot. The

initial sensorial state of the retina will be recovered. If it is

not, then the agent can state that the environment changed

during the identity transformation. Therefore, by retaining

only those transformations which do not involve move-

ments of the external environment, the agent can build

unambiguous ’T functions.

� the set of sensorimotor functions

As previously defined, � is the set of functions ’T , which

maps the proprioceptive states onto themselves. We will

show that our agent can capture the set of compensable

transformations T and that it learns the group properties

of this set. Using equation (5), we show (in Appendix 1)

that if the agent’s state modification from pq to pq0 com-

pensates for the environment transformation T , we have

pq0 ¼ ’T ðpqÞ ¼
� � �ðpf

qÞ � T � �ðpf
q0 Þ
�1 ���1ðpr

qÞ

p
f
q0

 !

(6)

�ðpr
qÞ ¼ X r

q is the function that describes the sensor

position relative to the agent’s body in the physical space

given the agent’s proprioceptive state pr
q. �ðpqÞ is the func-

tion that describes the movement of the agent’s body given

the foot proprioceptive state pf
q. We distinguish between

the reverse function of �, ��1ðXqÞ ¼ pf
q, and the opposite

function of �, �ðpf
qÞ
�1

, which is the opposite displacement

of �ðpf
qÞ. The function ��1 is the inverse function of �.

In this article, we present the ’T functions and their

properties and demonstrate that there is a calculable solu-

tion. It is important to note that the agent has no knowledge

of � and �. Only the mapping of pq to pq0 is known. We can

describe this mapping by a mathematical function. In order

to do so, we first consider transformations that are auto-

compensable in a stationary environment before moving to

the general case of a nonstationary environment.

Auto-compensable transformation. When considering the

auto-compensable transformation, the environment is sta-

tionary. We calculate ’0, where 0 indicates no movement

of the environment. When the agent moves its foot, it com-

pensates for the movement with its retina. The absolute

position of the retina does not change. It is the same before

the foot movement and after the compensating movement

of the retina. After the foot movement, the environment

perceived by the agent is changed in accordance with the

physical laws of signal propagation and perception. Com-

pensation is the act of retrieving the initial signal by a

movement different to that which generated the difference.

For every foot movement and initial retina position, the

final retina position corresponding to the compensated

movement is unique in a stationary environment (bijectiv-

ity of � and �). The signal measured after the compensat-

ing retina movement is compared to that before the foot

movement. The algorithm applied to the agent is as follows

1. The agent is in an environment at a given location

Xq, with the retina at a given position X r
q ¼ �ðpr

qÞ.
The agent can move its foot and generate a body

displacement �ðpf
qÞ, where pf

q is the foot state.

Clec’H et al. 5



2. The agent moves to a new location Xq0 in response

to a foot movement induced by the foot motor activ-

ity p
f
q0 . The transformation generating the displace-

ment is given by Xq h
�ðpf

q0 Þ Xq0 .

3. The agent compensates for the foot movement by

moving its retina in such a way that the retina visual

perception is the same before and after the initial

movement. The practical implementation is given

in Appendix 1. What the agent sees after compen-

sation is exactly what it saw before the foot move-

ment. The final relative retina position is measured

only by its internal state pr
q0 .

4. The agent creates an internal representation of auto-

compensation by mapping the initial internal state

pq to the final state pq0 , ’0ðpqÞ ¼ pq0 .

5. We show in the Appendix 1 that

’0ðpqÞ ¼
��1 � �ðpf

qÞ � �ðp
f
q0 Þ
�1 ��ðpr

qÞ

p
f
q0

 !
(7)

Compensable transformation. In this case, the environment is

not stationary. When the environment is moved, the agent

compensates by movement of the foot, retina, or both. The

signal on the sensor is the same when measured before the

movement of the environment and after the compensating

movement of the agent. The algorithm is as follows

1. The agent is in an environment at a given location

Xq, with the retina at a given position X r
q ¼ �ðpr

qÞ.
The agent can move its foot and generate a body

displacement based on the function �ðpf
qÞ where pf

q

is the foot state.

2. The environment is moved to �q0 with �q!T �q0 .

3. The agent compensates the external movement by

either:

a. A foot movement only. The body is moved in

such a way that its retina visual perception is the

same before and after the initial movement. The

retina proprioceptive value remains unchanged.

The foot proprioceptive value is p
f
q0 .

b. A retina movement only. The body is not moved

but the retina is moved in such a way that its retina

visual perception is the same before and after the

initial movement. The retina proprioceptive value

is pr
q0 . The final foot proprioceptive value is 0.

c. Both foot and retina movement. Both the body

and retina are moved in such a way that the retina

visual perception is the same before and after the

initial movement. The foot proprioceptive value

is p
f
q0 . The retina proprioceptive value is pr

q0 .

4. The agent creates an internal representation of the

transformation T by mapping the initial internal

state of the agent pq ¼
pr

q

p f
q

 !
to the final state

pq0 ¼ ’T ðpqÞ ¼
pr

q0

p
f
q0

 !
.

5. We show in the Appendix 1 that

’T ðpqÞ¼’T

pr
q

pf
q

 !
¼

��1 ��ðpf
qÞ�T ��ðpf

q0 Þ
�1 ��ðpr

qÞ

p
f
q0

 !

(8)

The set of ’T ðpÞ defines a manifold in internal state

space and can be used to show that the agent captures the

geometrical space as defined by Poincaré.3 The acquired

knowledge is a space representation given that its proper-

ties mathematically correspond to those of space (includ-

ing its group properties and the isomorphism with the

compensable transformation set). This is discussed in the

section ‘‘� is a representation of the geometrical space.’’

Figure 3 illustrates the steps of the coincidence algorithm

outlined above.

� is a representation of the geometrical space

As outlined previously, we will show that the set � of

functions ’T that corresponds to the mapping of proprio-

ceptive states to compensable transformations has all the

properties of the external space in which the agent is situ-

ated. The agent is capable of capturing the relevant prop-

erties even though it is not aware that such a set of

transformations is a group. Thus, the set � of ’T is a group

and is also isomorphic to the set of T .

Combinatory property. The combinatory operation � on the

set of ’T functions is defined such that for any Tq, Tq0 there

exists Tq
00 such that ’Tq0

� ’Tq
¼ ’T

q
00 . In other words, the

combination of two compensable transformations is itself a

compensable transformation.

Figure 3. The matching coincidence algorithm is based on the
comparison of the signal measured by each of the retina’s cells
before an external movement is applied to the agent and after the
compensating retina internal movement.
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Demonstration: From the construction of the function ’T ,

for any compensable transformation T , there is an associated

function ’T . Using the definition of a compensable transfor-

mation, there exists an action, which compensates for an

external transformation. The compensation can be either

an internal or external movement. As the displacement

caused by the movement of the foot can be any length

ð�ðpf ÞÞ, all combinations of compensable transformations

can be compensated by foot movement. Thus, any combi-

nation of compensable transformations is compensable.

It is also the case that 8Tq; Tq0 and Tq00 where

Tq0 � Tq ¼ Tq00 then ’Tq0
� ’Tq

¼ ’Tq00
¼ ’Tq0 �Tq

.

Demonstration

We begin with

’Tq
ðpqÞ ¼ pq0 (9)

Applying equation (9) twice gives

’Tq0
� ’Tq

ðpqÞ ¼ ’Tq0
ðpq0 Þ ¼ pq00

Combining these functions with equation (8), we obtain

pq00 ¼ ’Tq0
ðpq0 Þ ¼

��1 � �ðpf
q00 Þ � Tq0 � �ðpf

q0 Þ
�1 ��ðpr

q0 Þ

p
f
q00

0
@

1
A

¼
��1 � �ðpf

q00 Þ � Tq0 � �ðpf
q0 Þ
�1 �� ���1 � �ðpf

q0 Þ � Tq � �ðpf
qÞ
�1 ��ðpr

qÞ

p
f
q00

0
@

1
A

¼
��1 � �ðpf

q00 Þ � Tq0 � Tq � �ðpf
qÞ
�1 ��ðpr

qÞ

p
f
q00

0
@

1
A

¼
��1 � �ðpf

q00 Þ � Tq00 � �ðpf
qÞ
�1 ��ðpr

qÞ

p
f
q00

0
@

1
A

¼ ’Tq00
ðpqÞ ¼ ’Tq0 �Tq

ðpqÞ ¼ ’Tq0
� ’Tq

ðpqÞ

The combination of ’T functions does not depend on the

intermediary steps selected by the agent.

Group property. The axioms necessary to validate a group

are closure, associativity, the existence of an identity, and

the existence of an inverse for every element of the group.

� Closure

8p 2 P;8’Tq
; ’Tq0

then ’Tq0
� ’Tq

ðpÞ 2 P (10)

where P is the set of possible proprioceptive measures of

the retina and foot.

This first property is obvious. It comes from the learning

algorithm where the agent changes its proprioceptive state

with a retina or foot movement to compensate for an exter-

nal agent movement. The result of applying ’Tq
to any

p ¼
pr

pf

� �
belongs to P. We must demonstrate that

8p 2 P; 8Tq and Tq0 then ’Tq0
� ’Tq0

ðpÞ 2 P.

Demonstration: From the algorithm, we have

8pq 2 P; 8Tq then ’Tq
ðpqÞ 2 P. As ’Tq

ðpqÞ ¼ pq0 , we

apply the same logic: 8pq0 2 P; 8Tq0 then ’Tq0
ðpq0 Þ ¼

’Tq0
� ’Tq

ðpÞ 2 P

� Associativity

8’Tq
; ’Tq0

; ’Tq00
then ’Tq

� ð’Tq0
� ’Tq00

Þ ¼ ð’Tq
� ’Tq0

Þ � ’Tq00

(11)

Demonstration

’Tq
� ð’Tq0

� ’Tq00
Þ ¼ ’Tq

� ’Tq0 �Tq00
¼ ’Tq�Tq0 �Tq00

¼ ’Tq�Tq0
� ’Tq00

¼ ð’Tq
� ’Tq0

Þ � ’Tq00

� Identity

8’T ; ’0 then’T � ’0 ¼ ’0 � ’T ¼ ’T (12)

where ’0 is the identity

� Inverse

8’T then ’T � ’�1
T ¼ ’�1

T � ’T ¼ ’0 (13)

Demonstration for both identity and inverse:

In the group of transformations,8T we have T � T�1 ¼ Id

which implies 8T ; T�1 then’T � ’T�1 ¼ ’T�T�1 ¼ ’0.

This implies that ’�1
T ¼ ’T�1

which proves the existence of an identity element ð’0Þ
and the existence of a inverse function ’�1

T ¼ ’�1
T for

any ’T .

Clec’H et al. 7



These points demonstrate that the set � of the functions

’T is a group.

There is an isomorphism between the set of compensable
transformations T and the set of functions ’T . In order to

prove there is an isomorphism, we have to prove that the

two sets have the same dimension and that the ’T is linear

and injective.

For the dimension of both sets, we are using previous

work from Philipona et al.7,8 and Laflaquiere et al.,11 which

show that the internal representation of a compensatory

agent has the same dimension as the geometrical space of

transformation.

For linearity, we have shown that8Tq;Tq0 then’Tq
� ’Tq

¼
’Tq�Tq0

. In the limit of compensability, we can easily extend

it to 8Tq; Tq0 ; �; � then ’�Tq
� ’�Tq0

¼ ’�Tq��Tq0
which is

the expected linearity.

To show that the ’T are injective, we must prove that

8Tq; Tq0 if ’Tq
¼ ’Tq0

then Tq ¼ Tq0 . Since the set of ’T is a

group, for every item in the set, there is a reverse function.

Thus, ’Tq
¼ ’Tq0

then ’Tq
� ’�1

Tq0
¼ Id ¼ ’Tq�T 0�1

q
. Previ-

ously, we determined that if ’T ¼ Id, then T ¼ Id. There-

fore Tq � Tq0
�1 ¼ Id and Tq ¼ Tq0 .

Theses points demonstrate that the set of functions ’T is

isomorphic to the set of compensable transformations and

is thus a space representation.

Computation

Learning phase: Algorithm for computation of ’T

In this section, we present the algorithm used to calculate

’T where T is the external transformations applied to the

agent. The set of transformations is a set of translations in

two dimensions.

For the simulation, we considered a limited set of trans-

formations of the environment T and a limited set of pos-

sible compensations (both foot and retina; see Appendix 1

for details). Applying this algorithm allowed us to calculate

the complete set of functions ’T ðpqÞ ¼ pq0 .

Using ’T functions to retrieve movement

By referencing the memorized tuples of three elements

ðT ; pq; pq0 Þ , the combination of any two can be used to

retrieve the third. There are multiple possible solutions for

pq0 ¼
pr

q

pf
q

 !
given pq and T .

’T functions are only sensitive to compensable
transformations

In order to test the algorithm, we applied transformations

other than those the agent learned. We first applied a con-

tinuous transformation, where the length of translation is

not a multiple of the basic step size used in the computa-

tion. We then applied a scaling transformation, where the

source objects are deformed by homothetic deformation.

We also added random noise to the source light signals,

with an amplitude ranging from 10% to 500% of the initial

signal. Starting with a random initial retina proprioceptive

state pr
q and a random foot movement pf

q, we applied a

random transformation T and then compensated for it, giv-

ing the final retina proprioceptive state pr
q0 and foot action

proprioceptive state p
f
q0 . We then retrieved ’Tq

from the

best proprioceptive set ðpq; pq0 Þ and extracted the associ-

ated Tq. We compared the applied Ta and extracted Te (note

that the Tq found from the algorithm is noted as the

extracted Te. When applying unknown (or non-compensa-

ble) transformations, coincidence matching could not be

done. That is, it was not possible to match the states before

and after movement. Exact matching was not possible and

the error on the comparison of sensory measures increased

with the difference between the initial image and the final

image. The error between the applied Ta and the extracted

Te also became more significant as we measured k Ta;Te k.
This test was repeated for 1000 transformations, starting

with random retina positions and we calculated the error

between the applied movement and the compensated trans-

formation for the best tuple ðpq; pq0 Þ.

Internal space as a group of transformations

A calculation was performed for the full set of points in the

combined ’T in order to verify ’T1
� ’T2

¼ ’T3
then

T3 ¼ T1 � T2. For any random transformations T1 and T2,

we calculated T3 ¼ T1 � T2. We then compared ’T3

acquired directly from the set of ’T and the calculated

’T1�T2
¼ ’T1

� ’T2
. As shown in the paragraph on the vali-

dation of the group axioms, this property proves the asso-

ciativity, identity, and inverse axioms.

Testing parameters and mathematical functions. Our initial

selection of functions and parameters did not affect our

results. In order to demonstrate this, we repeated the simu-

lations with multiple sets of proprioceptive functions�
�ðprÞ ¼ X r

�
and varied the ratio of the applied move-

ments to the retina or foot movements.

Figure 4 illustrates the simple and complex propriocep-

tive models used in this article.

In all simulations, we used a grid for the environment

and a grid for the body displacement. The relevant values

for the simulation are as follows:

� The number of steps the agent moves on a grid

within the environment, # Steps.

� The ratio of environment displacement step size to

body movement step size, �e
�b

.

� The proprioceptive function measure �ðpÞ, which is

one of:

� Affine function: �ðpÞ ¼ X ¼ a� pþ b

� Logarithmic function: �ðpÞ ¼ X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1� pÞ

p
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� Proprioceptive coupling

� Uncoupled proprioceptive function (simple

model). Movement in any direction is associated

with a single proprioceptive measure. �ðpr
xÞ ¼ x

and �ðpr
yÞ ¼ y. This generates two independent

’T functions, ’x and ’y, where Tðx; yÞ is the

applied transformation.

� Coupled proprioceptive function (complex model).

Movement in any direction affects all proprio-

ceptive measures. �ðpÞ ¼ �ðpr
1; p

r
2;; p

r
i ;; p

r
nÞ ¼

ðx; yÞ. This generates a single multidimensional

’T , where T is the applied transformation.

The retina of the agent is composed of randomly located

cells in the retina. In the next section, we present the results

of varying sensory parameters such as the number of cells

and retina size in the simulations.

Results

Compensable movement versus non-compensable
movement

The estimated displacement when applying either compen-

sable movement or non-compensable movement is listed in

Table 2. Since we know the applied transformation (even

though the agent does not), we know the expected position

after the transformation. We compare this to the agent’s

estimated position after transformation and calculate the

difference between them. When the difference is zero, the

expected and estimated positions are identical. For this test,

we selected 1000 random movements (for each type of

transformation) and looked for the transformations T ,

which could be retrieved from the known ’T . The trans-

formations were as follows:

� Compensable transformations: Translations that are

multiples of the agent step length and land on the

agent grid positions.

� Continuous transformations: Translations of contin-

uous length which are not multiples of the agent

step length.

� Scale transformations: Include both a regular trans-

lation and a homothetic transformation applied to

the source object.

� Noise transformations: Random noise is applied to

the signal of the source object. The noise factor

100%. The source signal varied from 0 to 2.

Results are presented in Tables 1, 2, and 3.

Results in Tables 1 and 2 show that only compensable

movements were learned by the agent. We measured the

distance k Ta; Te k between the applied transformation Ta

and the extracted transformation Te. The estimated move-

ment is retrieved from the ’T , which maps the priopriocep-

tive state before the transformation to the proprioceptive

state after compensation. We retrieved the learned transfor-

mation using the tuple pb and pa where pb is the proprio-

ceptive measure of the agent (retina location before the

movement and agent in rest position) and pa is the proprio-

ceptive measure of the retina and the foot movement after

compensation. The applied transformation Ta is directly

linked to ðpb; paÞ. The Tables 1, 2, and 3 compare the dis-

tances k Ta; Te k (Ta applied transformation and Te esti-

mated transformation).

For compensable transformations, the agent always

retrieved the correct transformation. That is, the difference

between Ta and Te was always zero. This capacity to

retrieve the applied movement T for any tuple pa ¼
’T ðpbÞ was expected from the model. Non-compensated

transformations were not properly retrieved. The error on

the estimated movements was typically on the order of the

agent size but was on the order of the size of the environ-

ment for scale and noise transformations. The continuous

transformations gave better results than the scale and noise

transformations. Contrary to the results for scale and noise

transformations, the average distance for continuous trans-

formations was dependent on the size of the agent step

length. Continuous movements will always yield a better

match than non-regular movements (scale or noise trans-

formations). This can be interpreted by considering the grid

of possible agent positions. As the ’T were sampled on the

grid of possible agent positions, any estimation of move-

ment was always on a node of this grid. Thus, the estima-

tions for continuous movements (indeed any tested

transformations) always fell on the grid. In this case, the

continuous movements were translations and the error

depended on the agent step size and whether the continuous

movement landed between two grid positions. The nearest

Figure 4. Comparison between simple and complex agents. (a)
Simple agent. When the retina moves in the direction X, only the
proprioceptive px is transformed into p

0
x . py is not affected by the

movement and (b) complex agent. When the retina moves in any
direction, all proprioceptive detectors are affected
ðp1; p2; and p3Þ then ðp0 1; p

0
2; and p

0
3Þ.
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grid position was used as the estimated position. Although

the agent did not learn continuous movements, continuous

movements are similar to compensated movements within

the precision of the agent step length.

For scale and noise transformations, the deformations of

the source signal could not be matched by the agent space

representation. As the deformation of the image is not a

rigid transformation, the perceived sensory signal before

and after the transformation cannot correspond exactly.

This gives rise to a significant error on the difference in

sensory signals. The error was on the order of the agent size

and did not depend on any of the variable parameters (agent

step length, retina step length, and proprioceptive func-

tion). For an agent with one or two retina cells, the com-

pensation algorithm did not work properly and the agent

could not retrieve the movement. The results show that the

compensable transformations were fully learned while non-

compensable transformations were not mapped very well.

Table 3. Varying sensory parameters and number of signal sources for compensable and non-compensable movement.a

Parameters Error on k Ta; Te k

# Visual cells # Sources Compensable T Continuous T Scaling T Noise 100%

1 1 0.657 0.946 1.687 1.654
2 1 0.04 0.753 1.669 1.649
3 1 0 0.473 1.645 1.645
1 10 0 0.473 1.714 1.707
2 10 0 0.476 1.679 1.680
3 10 0 0.479 1.712 1.712

aSince the system was able to properly compensate with only three retina cells for one source and with any number of retina cells for 10 sources, further
results are not included. The # Steps are 10 � 10 and the retina to agent step length ratio is 1. The distance k Ta; Te k between the applied
transformation Ta and the extracted transformation Te has been measured.

Table 1. Simple model (uncoupled proprioceptive measure).a

Parameters Error on k Ta; Te k

# Steps �e
�b � Compensable T Continuous T Scaling T Noise 100%

10 � 10 1 Affine 0 0.447 1.684 1.659
20 � 20 1 Affine 0 0.293 1.588 1.564
10 � 10 1 Logarithmic 0 0.445 1.716 1.684
20 � 20 1 Logarithmic 0 0.258 1.627 1.596
10 � 10 2 Affine 0 0.478 1.666 1.614
20 � 20 2 Affine 0 0.306 1.632 1.594
10 � 10 2 Logarithmic 0 0.478 1.720 1.676
20 � 20 2 Exponential 0 0.289 1.635 1.606

aProprioceptive fields are decoupled with p ¼ ðpx ; pyÞ. Movements in X direction affect only px . Movements in Y direction affect only py . ’x , and ’y
functions were calculated for different step lengths and different retina to agent step length ratios. We measured the distance k Ta; Te k between the
applied transformation Ta and the extracted transformation Te

Table 2. Complex model (coupled proprioceptive measure).a

Parameters Error on k Ta; Te k

# Steps �e
�b � Compensable T Continuous T Scaling T Noise 100%

10 � 10 1 Affine 0 0.482 1.702 1.658
20 � 20 1 Affine 0 0.302 1.639 1.600
10 � 10 1 Logarithmic 0 0.478 1.662 1.623
20 � 20 1 Logarithmic 0 0.287 1.684 1.650
10 � 10 2 Affine 0 0.507 1.680 1.658
20 � 20 2 Affine 0 0.285 1.615 1.584
10 � 10 2 Logarithmic 0 0.466 1.689 1.650
20 � 20 2 Logarithmic 0 0.294 1.601 1.579

aResults for linked proprioceptive sensors. Moving the retina in any direction affects all proprioceptive measures. We measured the distance k Ta; Te k
between the applied transformation Ta and the extracted transformation Te.
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The agent learned the compensable transformations and

was able to distinguish between compensable and non-

compensable transformations.

Group properties of the function ’T

The results of combining the ’T functions in order to vali-

date the group properties are presented in Table 4. In order

to observe any effect on the quality of the space represen-

tation, we varied the numbers of cells and sources used in

the simulations.

Discussion

Sensorimotor contingency theory

The agent is a sensorimotor contingency model. The knowledge

acquired by the agent is not the result of direct sensory

analysis but of the creation of an abstract representation built

on the interaction between the sensory inputs and motor

control via proprioceptive signals. This result is predicted

by the sensorimotor contingency theory, where abstract

notions do not reflect regularities in the sensory inputs per

se but reflect robust laws describing the possible changes of

sensory inputs following actions on the part of the agent. The

set of ’T is the space of internal representation where T is

the transformation in the environment. By applying the com-

pensation algorithm, we showed that the set of’T is indeed a

space representation of the agent’s environment.

Space knowledge without a priori knowledge of body or
environment. It is important to note that the agent acquires

its space representation without any a priori knowledge of

either the structure of space or the group of transformations

that describe it. There is no initial hypothesis that the agent

is in space. The agent only has its sensory data, motor

action, and the sensorimotor association. Furthermore there

is no need for a strong hypothesis on the sensory informa-

tion the agent needs to use. Only visual coincidence match-

ing is used; no preprocessing of images or knowledge of the

metric is necessary. It is important to note that no model for

the environment is given to the agent and no assumptions

are made about its body (proprioceptive organization or

sensory capabilities).

Distinguishing external movement from internal action. Using

this model, the agent is able to distinguish between move-

ments of the environment and its own movements. During

the learning phase with both stationary and non-stationary

environments, the agent acquires the set of ’T and can

compare changes in the external environment to its proprio-

ceptive changes. The auto-compensable transformations

act as a reference for any external transformations of the

environment (see Figure 5).

The set � of ’T is a representation of space

Poincaré makes the distinction between sensible space and

geometrical space. Sensible space is explicitly related to

raw measures from different sensory systems. Poincaré

argues that despite the major differences between these

spaces, an agent can retrieve the properties of geometrical

space from the sensible spaces by considering the effects of

Figure 5. Set of curves ’x where x is the amplitude of the translation of the agent. The step size of the translation is 0.5 with an agent
length of 4. For this simple agent (x and y movements are decoupled), there are eight proprioceptive steps. We noted the external
transformation with the x and y following the length of the displacement. (a) ’x is expressed in terms of foot motor proprioceptive
values (from �2 to 2) and the retina proprioceptive measure (from 0 to 1). The ordinate is the retina value after compensation. This
surface corresponds to all possible couples pf , pr for a single movement (�1,2 x in our case) and (b) projection of ’x on the retina
proprioceptive coordinates without foot movement. Each curve corresponds to a unique external displacement. We see that the
curves are symmetric ’x � ’�x ¼ ’0 then’x ¼ ’�1

�x . ’0 is the invariant curve (no external transformation).
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actions on the sensible space. As the geometrical space can

be defined by the group of rigid transformations, if an agent

can capture these rigid transformations and their group

property, the agent acquires a representation of the geome-

trical space. As in our study, the agent does not have any a

priori knowledge of the rigid transformations or their

properties. However, using its sensorimotor system alone,

the agent can acquire a subset of these transformations (the

compensable transformations). Poincaré argued that

the agent will acquire not only the set of compensable

transformations but also learn that they behave as a math-

ematical group.

In the present article, the agent fully learned the set of

compensable transformations and that this set was a group.

More importantly, because the internal representation is

isomorphic to the group of compensable transformations,

the agent can also learn other information about it, for

example, the metric or topology. Terekov has used a similar

model to retrieve the metric.14

While the agent did not have any a priori knowledge of

its body or environment, we made some assumptions about

the mathematical functions of the model such as the bijec-

tivity and invertibility of the functions � and � for the

retina and foot proprioceptives states. Another assumption

that we made was that the foot displacement was

unbounded. Further generalization could use Marcel’s

formalism15 of a surjective model for the proprioceptive

states and include boundaries for the agent displacement.

While our theoretical framework does not limit or

specify the type of compensable transformation, all the

simulations were done using translation transformations.

Other type of transformations may also be simulated and

we are currently working on rotations. Furthermore, this

work used the visual sensory system for the coincidence

matching, but other sensory systems, such as auditory,

tactile, or vestibular systems, could be tested. In this

study, we applied the sensorimotor compensation theory

to a two-dimensional geometrical space. However, we

believe that a more general compensation theory could

be formalized on any type of physical space (not neces-

sarily a geometrical space) with its own specific types of

compensable transformations.

Defects in ’T give defects in the space representation

Our algorithm requires the signal function to be continuous

and invertible. The number of retina cells is an important

parameter as it affects the continuous and invertible prop-

erties of the sensorial signal. If the number of cells is too

low, for different absolute retina positions, the sensory

measure will not be unique. There calculated compensating

position will be ambiguous. For translations where the

compensation is exact (i.e. the agent’s retina can find the

exact same position the agent had before a transformation),

there is no effect of retina size, number of cells, or proprio-

ceptive signal as long as the conditions of a continuous

signal and reversibility are met. When we analyzed the

structure of the ’T function for extreme parameters (one

and two visual cells), we found that the agent was not able

to properly recognize compensable movements. In the case

of one single retina cell, the recognition was extremely

limited. The effects of these extreme parameters on both

transformation retrieval and group properties are shown in

Tables 3 and 4.

The curves plotted in Figure 6 illustrate this effect.

When the space representation is fully learned, the ’T is

well separated as in (a). However, this is not the case when

the space representation is invalid or incomplete. For two

retina cells (b), the ’T curves occasionally overlap. They

are totally invalid for one retina cell (c).

With such kind of handicap, an agent is not able to

properly develop a representation of space.

Problem of the rotation

We presented in this article a general framework and exact

mathematical proofs that are related to rigid transformation

as rotation and translation. However, during the simulation,

we have shown only results on the translation. It is impor-

tant to note that we are currently working on rotation simu-

lation. But rotations have two noticeable effects.

First, the simulation grid is not invariant by rotation but

it is by translation. Thus, the rotation transformation shows

similar defects on the representation of space as the hand-

icapped agent. We have been able to find a solution to

resolve this but giving the full explanation in this article

would have been problematic.

Second, the rotation is periodic. Rotating by 2� is equiv-

alent to no rotation in terms of sensory perception. This

very interesting property creats complexity that will be

presented in a future article.

These reasons forced us to not include rotation in the

present article. But we consider that this point does not limit

the results as the mathematical results are general for both

translation and rotation and only the simulation was

restricted.

Table 4. Testing the group propery of the function ’T by
calculating the combination of ’T1

and ’T2
in order to generate

a ’T3
where T3 ¼ T1 � T2.a

Parameters Results

# Visual cells # Sources Correct group combination (%)

1 1 5
2 1 75.7
3 1 100
1 10 100
2 10 100
3 10 100

aSince the system combined properly with only three retina cells for one
source and with any number of retina cells for 10 sources, further results
are not included. The # Steps are 10 � 10 and the retina to agent step
length ratio is 1.
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Conclusion

General statistical learning algorithms for perceptual cap-

abilities require a prerequisite model of the environment

and body in order to acquire the ability to behave and

generate actions. Space knowledge is predefined in the

model and is thus restricted by any assumptions of the

model. By contrast, our agent, whose learning is based on

proprioceptive compensation (or more generally, algebraic

learning), learns the properties of the surrounding space

without any prior assumptions. The learned representation

is a group, as proven in this article. Furthermore, the

agent’s internal representation can be used to distinguish

the agent’s own movements from those of the environment.

Our algorithms and implementation allow the usage of ’T

for space computation. Future work includes a further

theoretical formalization and simulations using other trans-

formations such as rotations. We will also consider the

acquisition of other types of knowledge, for example,

object knowledge and arithmetic knowledge.

Appendix 1

Formal expression of the ’T function

Figure 7 illustrates the compensation process. Starting in a

initial state pq, the agent has a retina position�
X r

q ¼ �ðpr
qÞ
�

in its body and moves the body by a foot

movement �ðpf
qÞ. The environment is moved homoge-

neously by a transformation T . The absolute position of the

retina in the environment changes by the combination of

�ðpf
qÞ � T . The agent compensates for the transformation

by moving its body by a new foot movement �ðpf
q0 Þ and

retina movement � positioning it at X r
q0 ¼ �ðpr

q0 Þ.

The compensation is equal to the initial transformation

applied to the agent

�ðpf
qÞ � T ¼ � � �ðpf

q0 Þ

�ðpf
qÞ � T � �ðpf

q0 Þ
�1 ¼ �

The final retina position in the body is

X r
q0 ¼ �ðpr

q0 Þ ¼ � � X r
q ¼ � ��ðpr

qÞ
pr

q0 ¼ ��1 � � ��ðpr
qÞ

pr
q0 ¼ ��1 � �ðpf

qÞ � T � �ðpf
q0 Þ
�1 ��ðpr

qÞ

This gives us the ’T function.

’T ðpqÞ ¼ pq0

’T ðpqÞ ¼ pq0 ¼
pr

q0

p
f
q0

0
@

1
A

’T ðpqÞ ¼
��1 � �ðpf

qÞ � T � �ðpf
q0 Þ
�1 ��ðpr

qÞ

p
f
q0

0
@

1
A

In the case of a stationary environment, the previous

formula simplifies to

’0ðpqÞ ¼ pq0 ¼
��1 � �ðpf

qÞ � �ðp
f
q0 Þ
�1 ��ðpr

qÞ

p
f
q0

 !

Implementation of the algorithm

The environment movements can be done on a grid. The

length of the grid steps is �e. The agent movements (foot

and retina) are done on another grid of steps length �b.

Figure 6. The set of’T curves for an affine uncoupled proprioceptive retina measure. Each curve corresponds to a learned movementT. (a)
When the sensory system is large enough to compensate properly (continuity and reversibility conditions are met), the agent exactly
compensates the movements and the curves are well separated and linear (for affine proprioceptive only); (b) when the sensory system is not
sufficiently large (two retina cells), the compensatory algorithm yields ambiguous results and cannot retrieve a well-separated manifold of’T
for different transformations T, resulting in an incorrect representation of space; and (c) when the sensory system is totally invalid (one retina
cell), the algorithm cannot find a match and the curves are invalid. The algorithm does not generate a representation of space in this case.
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Here is the algorithm in pseudo code: Loop over all

agent position in the environment X a. Loop over all pro-

rpioceptives states p ¼
pr

pf

� �
. Loop over all transforma-

tion of the environment T .

Compensate the transformation T knowing the initial

state p by calculating the new proprioceptive state bf p
0

corresponding to a movement of the body and a new

retina position.

The compensation is done by applying a coincidence

visual signal matching before applying T and after apply-

ing T . The foot and the new retina position minimizing the

distance between the initial signal and the compensated

signal: p ¼ Min
�
k �ðX a;X rÞ; �ðT � X a0 ;X r0 Þ k

�
. Calcu-

late all proprioceptive states p for solving this equation.

Save the tuples ðT ; p; p0Þ as ’T ðpÞ ¼ p0 with p ¼
pr

pf

� �
and p0 ¼ pr0

pf 0

 !

Continue looping for all combinations of T ; p; p0 in order

to generate all ’T functions.
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