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ABSTRACT

Philipona & O’Regan (2006) [1] recently proposed a linear
model of surface reflectance as it is sensed by the human
eyes. In their model, the tristimulus response to reflected
light is accurately approximated by a linear transformation
of the tristimulus response to illumination, allowing the pre-
diction of several perceptual characteristics of human vision.
Later, Vazquez-Corral et al (2012) [2] built a bridge between
Philipona & O’Regan’s model and von Kries-like approaches
to color constancy in computer vision by showing that the
linear operators could be diagonalized in a common basis.
However both of these studies required specifying a particu-
lar dataset of illuminants. We will show in this paper that it is
possible to compute adequate linear operators and a common
basis for diagonalization without specifying any particular set
of illuminants.

Index Terms— Philipona-O’Regan’s model, Illuminant
independency, Joint diagonality, von Kries model.

1. INTRODUCTION

Philipona & O’Regan (2006) [1] (PO from now on) recently
proposed a linear model of surface properties as they are
sensed by the human eyes. A crucial point of the model is
the definition of a linear operator in the cone response space
as being responsible for the transformation, by the surface,
of the perceived incident light into the perceived reflected
light. Their model is able to predict perceptual characteristics
of human color vision, as unique hues and hue cancelation.
Later, Vazquez-Corral et al (2012) [2] (V-C from now on)
were able to build a bridge between PO’s model and classic
strategies to achieve color constancy in computer vision, as
the von Kries diagonal method. They did this by computing
a global transformation in which all of the linear operators
defined by PO can be approximately considered diagonal.
However, both of these studies rely on the specification of a
data set of natural illuminants. This limits their robustness
with respect to every other kind of illuminant. Furthermore,

V-C strategy relies on the designation of a particular standard
illuminant. We will show in this paper that it is possible to
compute linear operators and also to make a global change of
basis without resorting to any database of illuminants.

This paper is divided in two parts: in a first part, we will
introduce PO’s model in detail and present a novel compu-
tational/statistical approach to the model that is completely
illuminant-independent. A quantitative comparison will be
discussed between the two. In a second part, we will start by
explaining thoroughly how the link between PO’s model and
classical strategies to achieve color constancy can be made
through the definition of a global diagonalizing matrix. Then,
we will use theoretical and computational arguments to justify
the existence of such a surface and illuminant-independent
transformation and finish by proposing a new method to com-
pute this transformation.

2. PHILIPONA & O’REGAN’S MODEL

2.1. Biological analogy of a surface reflectance

Consider a surface S illuminated by a light with spectral
power distribution E(λ), λ ∈ Λ = [400, 700]nm, Λ being the
visual spectrum. Let RL(λ), RM (λ), RS(λ) denote the ab-
sorption rate at each wavelength λ by photopigments present
in the L,M,S human photoreceptors. The information ac-
cessible to the human nervous system can be expressed by
u(E) = (uL(E), uM (E), uS(E))t, where:

ui(E) =

∫
Λ

Ri(λ)E(λ)dλ, i = L,M,S. (1)

If we denote with S(λ) the reflectance function of the surface
S, we can describe the accessible information about the light
reflected by S as vS(E) = (vSL(E), vSM (E), vSS(E))t, with:

vSi (E) =

∫
Λ

Ri(λ)E(λ)S(λ)dλ, i = L,M,S, (2)

we stress that this equation holds true only if there is no ex-
change of energy between different wavelengths (e.g. it does



not hold for fluorescent surfaces). PO hypothesized that the
transformation of u(E) into vS(E) is linear i.e.:

vS(E) = ASu(E), (3)

where AS : R3 7→ R3 is a linear operator that can be repre-
sented by a 3×3 matrix and which should only depend on the
surface S and not on the illuminant E. We interpret AS as the
biological analogue of the physical reflectance of a surface,
since it is the operator responsible for the transformation by a
surface of the incident light into the reflected light, as sensed
by the photoreceptors. We will thus call AS the reflectance
matrix (RM from now on).

The assumption of the existence of such a linear operator
is not trivial. PO used statistical tools in order to verify it: they
computed the empirical variance of the residuals η = vS(E)−
ASu(E), whereAS is obtained by linear regression of vS onto
u over a set of natural and simulated daylight illuminants [1].
The coefficients of linear determination R2 for their set of
surfaces (over 1600 Munsell chips and 1800 natural surfaces)
are surprisingly high, with mean values higher than 0.995,
which shows the validity of the linear hypothesis.

We notice that, with this method, the matrix AS depends
on the dataset of illuminants used to compute it. In Section 3
we will discuss in greater detail this dependence and present
a novel method for the computation of the RMs that allows
complete independence with respect to the illuminant.

2.2. Diagonalisation of the reflectance matrix and compu-
tation of the virtual basis

PO showed that for every surface of their database, the RM
AS can either be exactly diagonalized or almost diagonalized
with three distinct real eigenvalues. In other words, there ex-
ists an invertible matrix T S, which depends on the surface S,
such that:

vS(E) =
(
T S)−1

DST Su(E), (4)

where DS is a diagonal 3×3 matrix. T S : R3 → R3 is then
the linear operator responsible for the change of basis where
AS is diagonal. This basis is given by the eigenvectors of AS.

Equation (4) can be rewritten as:

T SvS(E) = DST Su(E)

ṽS(E) = DSũS(E),
(5)

where ũ(E) and ṽS(E) are vectors in the new basis obtained
by applying the operator T S. Note that, since T S depends on
the surface S, so does ũS(E).

By linearity and recalling Eq. (1), we can write T Sui(E) =∫
Λ

∑
j T

S
ijRj(λ)E(λ)dλ, for every i, j = L,M,S. If we

define R̃i =
∑

j=L,M,S

T S
ijRj(λ), we find:

ũSi (E) =

∫
Λ

R̃i(λ)E(λ)dλ, i = L,M,S, (6)

and likewise for ṽSi (E).
V-C [2] have interpreted R̃i as the absorption rate at each

wavelength λ of virtual photopigments present in virtual pho-
toreceptors. For this reason, the basis in which the RM is
diagonal is called the virtual basis, denoted by L̃M̃ S̃S. The
diagonality of the RM implies that the components of ũS(E)
do not mutually interact with each other when they are re-
flected by the surface S, and are simply individually scaled
by the associated eigenvalues. In other words, the absorption
rate curves of the virtual photopigments are less overlapping
than the real ones.

Then, by definition of the virtual basis we have ṽSi (E) =
rSi ũ

S
i (E), i = L̃, M̃ , S̃, which is equivalent to:

rSi =
ṽSi (E)

ũSi (E)
. (7)

rS
L̃
, rS

M̃
, rS

S̃
can thus be simply interpreted as three indepen-

dent reflection coefficients in each of the three virtual chan-
nels.

3. ANALYSIS OF THE INDEPENDENCE OF
PHILIPONA & O’REGAN’S LINEAR HYPOTHESIS

WITH RESPECT TO THE ILLUMINANT

As said previously in Section 2.1, the method used by PO to
compute the RM is intrinsically dependent on the database
of illuminants it relies on. As a consequence, the computed
RMs will not accurately apply to an illuminantE sharing poor
similarities with the database used for the linear regression.
In this section, we will discuss a procedure to compute the
matrices AS without resorting to any particular database of
illuminants. We will see that the technique we propose is a
good trade-off between robustness with respect to illuminant
changes and the consistency of the matricesAS with the linear
model expressed by Eq. (3).

3.1. A novel approach to compute the RMs independently
with respect to the illuminant

Let AS
ij , j = L,M,S, denote the components of AS. Then, if

the linear hypothesis of PO holds true, we can easily explicitly
write Eq. (3) in components as follows:

vSi (E) =

∫
Λ

E(λ)
∑
j

AS
ijRj(λ)dλ, (8)

which, thanks to Eq. (2), can be rewritten :

∫
Λ

E(λ)

S(λ)Ri(λ)−
∑
j

AS
ijRj(λ)

 dλ = 0. (9)

The other assumption of PO is that the RM should be inde-
pendent of the illuminant, i.e. Eq. (9) must be true for any



E(λ). Thanks to the Fundamental Lemma of Calculus of
Variations [3], it follows that:

S(λ)Ri(λ)−
∑
j

AS
ijRj(λ) = 0, ∀λ ∈ Λ. (10)

Thanks to Eq. (10), we can avoid performing a linear re-
gression over a specified database of illuminants as in PO’s
method, because it can now be performed over Λ. We will
call this approach the Illuminant Independent (II) approach.

3.2. Quantitative comparison between PO’s and the II
approaches

In our calculations we used the same databases as PO
did for natural illuminants [4–6] and for Munsell chips
[7], the latter made available by the University of Joensuu
(http://spectral.joensuu.fi/). However, the database of natu-
ral surfaces that we used was taken from [8], Joensuu and
Trieste Universities. For cone sensitivities, we used the 2◦

Stockman & Sharp cone fundamentals [9] as in [10] instead
of the 10◦ Stiles & Burch [11] or the Smith & Pokorny [12]
color matching functions used in PO’s and V-C’s papers re-
spectively. The reason for our choice is simply that Stockman
& Sharp cone fundamentals directly refer to the sensitivity of
human photoreceptors. In any case, the results are similar for
all of the sensor functions chosen among those three.

Similarly to PO [1], we checked the validity of the lin-
ear and illuminant-independent hypothesis by computing the
empirical variance of the residual η = y − ŷ, where y is the
known quantity that the linear model tries to approximate and
ŷ is the approximated value obtained with the model. How-
ever, since we want the model to satisfy both Eq. (3) and Eq.
(10), we considered the two kind of residuals defined in the
following table:

Residual y ŷ
η1 S(λ) · R(λ) ASR(λ)
η2 vS(E) ASu(E),

where R(λ) = (RL, RM , RS)(λ).
For further clarification, we used the exponents PO and II to
differentiate the cases where the RMs have been computed
with PO’s or the II approach, respectively.

We will denote with VAk
i the percentage of variance of

data accounted for by the model, i.e.

VAk
i = 1−

〈
var(ηk

i )

var(yi)

〉
, i = 1, 2, k = PO, II, (11)

where 〈 〉 represents the average of the quantity inside w.r.t.
the channels L,M,S. Figure 1 and Table 1 summarize the re-
sults obtained with the II approach. In both graphs of Figure
1, the full and dashed lines represent the average and median

value of VAk
i , respectively. The graph on the left refers to

VAII
1 , while on the right we show that of VAII

2 .
The average values for the two graphs are 97% for VAII

1

and 99.7% for VAII
1 . However, it is important to stress that the

minimum attained by VAII
1 is 50 %, while that of VAII

2 is 92%.

Fig. 1. Left: VAII
1 . Right: VAII

2 , for their definition, see (11).

The results for VAII
1 show that, even though the linear

and illuminant-independent hypothesis hold true for the large
majority of the reflectance functions considered, they do not
for all of them. However, the model still allows a very good
approximation of the information about the reflected light
vS(E), as shown by the results for VAII

2 . The explanation of
this fact would require too much space and we will provide it
in further communications.

Looking at Table 1 and comparing the VAII
2 and VAPO

2 ob-
tained for natural illuminants, one could argue that the AS

computed with PO’s approach allows better results than with
the II approach. The reason for this is that, since the regres-
sion matrices AS calculated with PO’s strategy are computed
with respect to a particular set of illuminants, natural in this
case, they are optimally adapted to it, while those computed
with the II approach are not. Thus, we thought it would be
interesting to test the robustness of the two approaches with
respect to illuminant changes i.e the consistency between the
AS matrices and the linear model in Eq. (3) when a drastic
change of E(λ) occurs. In order to test this, we considered
two other illuminant datasets provided by Witzel et al in [10].
The first one was of fluorescent illuminants and the second
was of almost-monochromatic visual lights. Both types of il-
luminants are very different from the natural ones.

In Table 1, we show the VA values with the II and PO
approaches for natural, florescent and almost-monochromatic
illuminants. The key point is that all values of VAPO

2 were
calculated with the RMs computed over the dataset of nat-
ural illuminants and applied to the fluorescent and almost-
monochromatic conditions.

We notice that PO’s matrices become less and less
adapted to satisfy the linear model when we pass from the
natural illuminant dataset to the florescent and the almost-
monochromatic ones, with VAPO

2 average values of 99.9% to
98.7% to 91.7% respectively. In particular, we observe the
presence of a negative value for VAPO

2 . Instead, the AS ma-
trices computed with the II model remain, in terms of mean,



VAII
1 VAII

2 VAPO
2

mean median min mean median min mean median min
natural 96.57 97.95 50.25 99.70 99.96 91.93 99.94 99.97 98.83

fluorescent ” ” ” 99.45 99.75 87.23 98.69 99.45 65.53
monochromatic ” ” ” 96.33 97.83 37.72 91.68 96.00 -2.30

Table 1. VA values in the case of natural, florescent and almost-monochromatic illuminants. See text for further explanations.

median and minimal value, a better approximation than PO’s
for the florescent and almost-monochromatic sets.

Once computed, the RMs found with the II approach are
more reliable than those found with PO’s in terms of general-
isability to other illuminants. They can thus serve as a starting
point to find a unique change of basis transform independent
with respect to the illuminant.

4. A THEORETICAL AND COMPUTATIONAL
DISCUSSION OF PO’S MODEL IN THE CONTEXT

OF COMPUTER VISION

In their article, PO, and after them V-C, pointed out the possi-
ble link of the model with common approaches used in com-
putational vision to achieve color constancy, such as the von
Kries algorithm [13]. They argued that this link is valid if
the matrices AS can be diagonalized using a unique transfor-
mation that is independent of the surface S. For the sake of
clarity, we will start this section by describing thoroughly the
bridge between PO’s model and computer vision. Then, we
will show that the existence of a S-independent diagonaliz-
ing transformation is a theoretical consequence of PO’s model
applied to multiple surfaces. Finally, we will present a novel
approach to compute this transformation without resorting to
any standard illuminant or any particular illuminant database.

4.1. Bridge between PO’s model and computer vision

Suppose that we have a visual scene illuminated by only one
spatially homogeneous light source E(λ), and consider an
RGB camera with spectral sensitivity functions picked in the
low, medium and high visible wavelengths, usually indicated
with R, G and B, respectively. We denote the spectral sensitiv-
ity functions as ρc : Λ → R+, c ∈ {R,G,B}. The analysis
performed in [14] showed that supp(ρc), the supports of the
functions ρc, are very similar and weakly overlapping com-
pared to the spectral sensitivity functions of retinal cones.

In the Lambertian digital image formation model, see e.g.
[15], the intensity vc(x,E) of a pixel x in the chromatic chan-
nel c is represented as follows:

vc(x,E) =

∫
Λ

ρc(x, λ)S(x, λ)E(λ)dλ. (12)

If we consider the supports supp(ρc) as not overlapping and
the reflectance functions S(x, λ) as constant with respect to

λ in each subset supp(ρc), i.e. S(x, λ) ≡ Sc(x) for all λ ∈
supp(ρc) and c ∈ {R,G,B}, then vc(x,E) can be re-written
as:(

vR(x,E)
vG(x,E)
vB(x,E)

)
=

(
SR(x) 0 0

0 SG(x) 0
0 0 SB(x)

)(
uR(E)
uG(E)
uB(E)

)
. (13)

Notice that the simultaneous dependence on x and E of the
left-hand side of the equation is separated into two multiplica-
tive components, one being the diagonal matrix of elements
Sc which depends on x, and the other being the vector com-
ponents uc which depend on E.

The von Kries diagonal transformation [13], used as a ba-
sis in several approaches to color constancy, see e.g. [16, 17],
is described by the following formula:(

SR(x)
SG(x)
SB(x)

)
=

(
1/uR(E) 0 0

0 1/uG(E) 0
0 0 1/uB(E)

)(
vR(x)
vG(x)
vB(x)

)
.

(14)
We stress that the von Kries matrix transformation is diagonal
thanks to the diagonal nature of Eq. (13). Moreover, its inde-
pendence with respect to the pixel position x is a consequence
of the separability property of Eq. (13).

We would like to translate what we have just stated into
the terms of PO’s model. First of all, the equivalent of Eq.
(13) in PO’s setting is Eq. (3). The matrices appearing in the
two formulae depend only on surface properties. HoweverAS

is not diagonal, thus it is not possible to write a von Kries-like
transformation to obtain information on the reflectance.

Notice, however, that in the virtual basis expressed by Eq.
(5) the RM is diagonal. If we write Eq. (5) in terms of com-
ponents we find:(

ṽSL̃(E)
ṽSM̃ (E)
ṽSS̃(E)

)
=

(
rSL̃ 0 0
0 rSM̃ 0
0 0 rSS̃

)(
ũS

L̃(E)
ũS

M̃ (E)
ũS

S̃(E)

)
. (15)

By direct computation, the previous formula can be re-written
as:(

rSL̃
rSM̃
rSS̃

)
=

(
1/ũS

L̃(E) 0 0
0 1/ũS

M̃ (E) 0
0 0 1/ũS

S̃(E)

)(
vSL̃(E)
vSM̃ (E)
vSS̃(E)

)
.

(16)
If we look at Eqs. (14) and (16) we see that in the latter the
diagonal matrix depends on the surface S, as a consequence of
the dependence of ũS = T Su on S. This argument shows that,



if we want to be able to apply a von Kries-like transformation
in PO’s framework, the transformation T S to the virtual basis
must be independent of S.

In the following subsections we will discuss this impor-
tant issue in theoretical and computational terms.

4.2. A theoretical argument for the existence of a unique
virtual basis in the context of PO’s framework

The existence of a global change of basis transformation can
be theoretically derived from Eqs. (1), (2) and (3), the very
roots of PO’s model. First of all, let us recall an important
result of linear algebra: a set of matrices is simultaneously
diagonalizable if and only if they commute. In particular,
in PO’s setting, this means that two matrices AS1 and AS2 ,
relative to two arbitrary surfaces S1 and S2, can be diago-
nalized in the same basis if and only if they commute, i.e.
AS1AS2 = AS2AS1 . We shall now give an argument to show
that the commutativity of these matrices must indeed hold
true. First of all, notice that, from a physical point of view,
light reflected by a surface of spectral reflectance S(λ) is in-
distinguishable from light emitted by a source whose power
distribution is E(λ)S(λ). Considering Eqs. (1) and (2), this
can be translated into the following expression:

vSi (E) =

∫
Λ

Ri(λ) [S(λ)E(λ)] dλ, i = L,M,S

= ui(S · E).

(17)

Thus, if we consider the situation of a ray of light reflected by
a surface S1 onto another surface S2, then due to the definition
of reflectance [18] the accessible information about the light
reflected in this process is:

ui(S1S2 · E) =

∫
Λ

Ri(λ) [S1(λ)S2(λ)E(λ)] dλ

=

∫
Λ

Ri(λ) [S2(λ)S1(λ)E(λ)] dλ

= ui(S2S1 · E),

(18)

which shows that the role of S1 and S2 can be inverted in the
process described above.

If we write it in its vector form we find:

u(S2S1 · E) = vS2(S1 · E) = AS2
∫

Λ

R(λ)S1(λ)E(λ)dλ

= AS2AS1u(E).

(19)

Similarly, if we compute u(S1S2·E), we obtainAS1AS2u(E).
Thanks to Eq. (18), we have AS1AS2u(E) = AS2AS1u(E)
for all pairs of surfaces S1 and S2, hence the commutativity
of the RM matrices and the existence of a global change of
basis transformation.

4.3. A novel strategy to find a unique diagonalization ma-
trix in PO’s setting

Now that we have provided an argument for the existence of
a unique transformation T able to jointly diagonalise all RM
at once, we have to computationally find it.

This problem has already been considered by V-C et al.
in [2], where the authors proposed a strategy to find T which,
however, depends on the choice of a particular illuminant and,
once again, on the database that was selected. Here we are
going to describe a new strategy that does not have these lim-
itations.

A commonly used measure for the the joint diagonality of
a set of N matrices {Mk}Nk=1 proposed in [19] is the average
of the squared Frobenius norm of the off-diagonal elements
of each matrix, i.e.

JD =
1

N

N∑
k=1

∑
i6=j

∣∣Mk
ij

∣∣2 (20)

=
1

N

N∑
k=1

∥∥[Mk − diag(Mk)]ij
∥∥2

FRO . (21)

The larger JD, the less the set of matrices is jointly diagonal.
The goal of the algorithm that we want to propose is

thus to find the optimal change of basis transformation Topt
that minimizes JD. Using the notations introduced for PO’s
framework in the case of N surfaces Sk, we can write the
optimality condition as follows:

Topt = arg min
T∈R3×3

JD(T )

= arg min
T∈R3×3

1

N

N∑
k=1

∑
i 6=j

∣∣(T−1ASkT )ij
∣∣2 . (22)

We stress that the matrices that appear in the previous
equation are not symmetric nor self-adjoint, thus we cannot
apply the minimization strategies proposed in [19–23] in our
context. However, the gradient descent strategy proposed by
(Hori, 1999) [24] can be adapted to our framework because it
requires only the non-singularity of matrices.

The gradient of JD is:

∇JD(T ) = 2T

N∑
k=1

[(
T−1ASkT

)t
,
(
T−1ASkT − diag(T−1ASkT )

)]
,

(23)
where [M1,M2] = M1M2 −M2M1 is the commutator be-
tween matrices, so the discrete gradient descent equation to
find Topt is:

Tn+1 = Tn − αn
∇JD(Tn)

‖∇JD(Tn)‖
, n ≥ 0 (24)

where 0 < αn < 1 is the step dependent weight of the nu-
merical scheme.



Stockman & Sharp Smith & Pokorny Stiles & Burch 1.6934 −1.5335 0.0750
−0.8547 2.1269 −0.2243
0.0215 −0.0432 1.0169

  17191 −1.5603 0.0666
−0.8836 2.1573 −0.1800
0.0349 −0.0680 1.0128

  1.0388 −0.3447 0.1559
−0.1066 1.0896 −0.1059
0.0043 −0.0137 1.0127


Table 2. Optimal global change of basis matrix found with the gradient descent for the three kinds of cone sensitivities used
in [1], [2], [10].

The matrix which minimizes the error JD, among the 2340
matrices of our dataset with columns given by the eigenvec-
tors of

{
ASk

}
, was selected as the initial transformation T0.

The stopping criterion of the numerical scheme is the fol-
lowing: we consider that the algorithm converged when the
L1 distance between Tn+1 and Tn is less than ε = 10−3.
This value for ε was chosen empirically on the basis of the
numerical values of the matrix elements of Tn, as well as for
the efficiency of the algorithm.

In Fig. 2 we show the decreasing behavior of JD(Tn) with
respect to n. It can be seen that, after 6 iterations, the correc-
tions are negligible. Thus, in practice, we can considere, the
algorithm to be convergent after 6 iterations with a value of JD
of 0.0006. This value is such that ratio between the squared
Frobenius norm of the off-diagonal elements and that of the
whole matrices, averaged over the entire dataset, accounts for
less than 0.4%.

Table 2 shows the Topt found with the gradient descent
for the three kinds of cone sensitivities.

5. CONCLUSION

We have shown in this work that an alternative method to PO’s
can be used to compute the reflectance matrices AS. This
method has the advantage of being fully independent with re-
spect to the illuminant. It is thus more robust to illuminant

Fig. 2. Gradient descent applied on the set of 2340 RMs com-
puted using the II approach.

change, while still allowing satisfactory results in the approx-
imation of the information available to the eye about the re-
flected light vS(E). It also allows the computation, through a
simple gradient descent, of a global change of basis transfor-
mation T which is independent of illuminants, and compat-
ible with classic von Kries-like approaches to achieve color
constancy despite the significant overlap of human cone sen-
sitivity functions.
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