
Gradual Tuning: a better way of Fine Tuning the
parameters of a Deep Neural Network

Guglielmo Montone
Laboratoire Psychologie de la Perception

Université Paris Descartes, Paris
montone.guglielmo@gmail.com

J.Kevin O’Regan
Laboratoire Psychologie de la Perception

Université Paris Descartes, Paris
jkevin.oregan@gmail.com

Alexander V. Terekhov
Laboratoire Psychologie de la Perception

Université Paris Descartes, Paris
and

Redwood Center for Theoretical Neuroscience
University of California, Berkeley

avterekhov@gmail.com

Abstract

In this paper we present an alternative strategy for fine-tuning the parameters of a
network. We named the technique Gradual Tuning. Once trained on a first task, the
network is fine-tuned on a second task by modifying a progressively larger set of the
network’s parameters. We test Gradual Tuning on different transfer learning tasks,
using networks of different sizes trained with different regularization techniques.
The result shows that compared to the usual fine tuning, our approach significantly
reduces catastrophic forgetting of the initial task, while still retaining comparable
if not better performance on the new task.

1 Introduction

Due to the huge amount of data needed to train a network it is always more common in the Deep
Learning community to use Transfer Learning techniques. Such techniques mainly consist in training
a network on a new task after the same network has been trained in solving one or more tasks similar
to the new one. Transfer Learning has been proven to be effective in many domains like image
recognition, natural language processing and reinforcement learning [3, 1, 5]. Two strategies are
particularly common in Transfer Learning [6]. In one strategy, referred to as Fine Tuning, training
on a new task involves allowing modification of all the parameters of the network. The second
strategy instead consists in adding some new parameters to the network, often by adding new layers
on top of the old network. The network is then trained on the new task by modifying only the new
parameters [2]. While Fine Tuning is often the more effective of the two techniques, it has the major
drawback of suffering from Catastrophic Forgetting (CF): training on the new task considerably
reduces performance on the first task.
In this paper we propose a very simple variation of fine tuning that we called Gradual Tuning: during
the training of the network on the second task we involve the parameters of the network only gradually,
first allowing just the output layer of the network to be updated and then progressively involving
the rest of the parameters. The justification for this procedure derives from the following simple
consideration: the gradient of the error function with respect to one of the features of the network
(here the word feature refers to the vector of incoming weights of a neuron) is a function of the
feature itself but also of the way the feature is connected to the other features of the network. If the

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



network has good features at level L for solving a given task but these features are not appropriately
connected together by the upper layer, then both the features of layer L and the upper layers will have
a gradient different from zero. So good features of layer L may be changed just because the upper
layer does not combine them in the proper way.
We tested Fine Tuning and Gradual Tuning on different tasks. A first set of experiments was run on a
transfer learning task build on the MNIST dataset [4]. The rest of the experiments were involved more
challenging synthetic tasks. These tasks, all consisting in binary classification of images involving
the concepts of line and angle, were developed to test Fine Tuning and Gradual Tuning in different
conditions. In a first experiment we compared the two strategies when the transfer is between two
very similar tasks or when it is between two more different ones. In order to test how much the quality
of the transfer and the amount of CF was affected by the quality of the initial features we developed a
second group of experiments. In these experiments the network was at first trained on a group of 5
tasks, then the training on a new task was performed by using both Fine Tuning and Gradual Tuning.
The paper is organized as follows: In the next section we will more clearly describe the Gradual
Tuning procedure. In section 3 and 4 we will present all the experiments we developed and the dataset
used. Finally in 5 we will present the results of our experiments.

2 Gradual training procedure

In this paragraph we will give a precise description of the Gradual Tuning procedure that we used in
all the experiments presented in this paper. Let’s consider a network trained on a first task (Task-A)
that we wish to train on a second task, Task-B. To do so we connect the last hidden layer of the
network with some new output neurons, randomly initializing the weights of this new layer. Then we
start the training on the second task. The training with the Fine Tuning procedure simply consists in
evaluating the gradient for all the parameters of the network and updating them with the usual update
rule. In the Gradual Tuning procedure we start by allowing just the parameters of the output layer to
be updated, then, when the performance of the network stops improving, we allow the hidden layer
closest to the output to be trained as well. We continue in this way allowing the next hidden layer to
be updated each time the performance of the network stops improving. The process stops when all
the layers of the network have been modified by the training.

3 Experiments

The experiments described in this paper are all meant to examine the amount of CF in transfer learning
tasks when a network is trained with the standard Fine Tuning procedure as compared to training with
the Gradual Tuning. All the experiments were developed on FFW networks (the characteristics of the
network can be found at the end of this paragraph). The procedure of the first group of experiments is
the following. We first train the network on a first task (Task-A). Then the last hidden layer of the
trained network, other than the layer that remains connected to the output layer used for Task-A, is
additionally connected to a new output layer that will be used for training the network on a second
task (Task-B). The weights of this new output layer are randomly initialized. The network is then
trained on Task-B, while the performance of the network is evaluated both on Task-A and Task-B.
The training of the network on Task-B is done either with the usual Fine Tuning or with the Gradual
Tuning procedure. We compare the two training procedures in the following situations:

• when Task-A and Task-B are both either simple or more complex;
• when Task-A and Task-B are similar or different.

In the first experiment we did on MNIST, we split MNIST into two datasets, one containing the digits
from zero to four and one containing the digits from five to nine. Task-A and Task-B consisted both
in 5-class classification problems.
In order to have more challenging tasks for the network we build a series of synthetic binary
classification tasks. All the tasks involve the concepts of line, angle and triangle. In each task
the network receives an image as input and has to answer a question like: "is there an angle or a
triangle?". A precise description of each dataset and the relative binary classification task can be
found in paragraph 4. We develop such tasks for different reasons. The first is simply that such
tasks are more complex than MNIST, meaning that the network needs much more data to have good
performance (less than 10% misclassified). The second reason is that we wanted to have both tasks

2



a b c d

e f g h

Figure 1: In each pictures some samples from the used datasets. (a) ac (b) acl (c) at (d) atl (e) sbl (f)
sbt (g) sb2l (f) cnc

that were very similar to each other and tasks that were more different. In this way we would be able
to check to what extent similarity of the tasks influences CF: This was our second experiment where
a network trained on Task-A was then trained on Task-B in two different conditions, with Task-B
more or less similar to Task-A.
A third reason for having a set of similar tasks was that we wished to investigate how much CF
depends on the quality of the features the network learned during Task-A. To test this we developed
the following experiment. During the first part of the experiment, the network was trained on several
tasks (5-tasks) at the same time. This was done by connecting the last hidden layer of the network to
five different output layers. The training was executed at the same time, meaning that in each epoch
the batches of data relative to the different datasets were regularly alternated. Paragraph 5 provides
the details of the training procedure. Once the training was over, a new output layer was connected to
the last hidden layer of the network and the network was trained on a second task (Task-B). During
the training the performance of the network was evaluated for the five classification tasks of Task-A
and the classification of Task-B.
Two kinds of FFW networks were used during the experiments. The first kind has two fully connected
hidden layers of 500 units each. The second kind of network has three fully connected layers of
1000 units each. The activation function of the nodes of the hidden layers is a ReLU function
(f(x) = max(0, x)). The activation function of the output units is a softmax function. In the
following we will refer to the two architectures as the (500-500) and the (1000-1000-1000) network.
The error used to train the network was the categorical cross-entropy.
We will frequently refer to two different regularization techniques, namely L1 regularization and
Dropout. In the case of L1 regularization the sum of the absolute value of the weights of the network
were multiplied by a coefficient λ1 = 10−4 and added to the training error of the network. In the
case of Dropout, the percentage of neurons that were dropped out during the training was 20% for
the first hidden layer of the network and 50% for the other layers.

4 The tasks

The experiments consisted in training a network on classification tasks. In this section we illustrate
all the tasks we used. We split the MNIST dataset into two smaller datasets that we named MNIST-04
and MNIST-59. The MNIST-04 dataset contains the MNIST digits between 0 and 4 while the
Mnist-59 contains the digits between 5 and 9. Both MNIST-04 and MNIST-59 are composed of
approximately 30.000 gray-scale images of 28× 28 pixels. Each of the datasets was split into three
smaller sets containing 20.000, 5.000 and 5.000 data points, respectively used as training, validation
and test sets.
The tasks we built by creating synthetic datasets are all binary classification tasks. In each task
the stimuli were gray scale images, 32 × 32 pixels in size. Each image contained two to four line
segments, each at least 13 pixels long (30% of the image diagonal). The segments were white on a

3



dark random background or black on a light random background. Examples of the 8 tasks can be
seen in figure 1):

ac: requires classifying the images into those containing an angle (between 20◦ and 160◦) and a pair
of crossing line segments (the crossing point must lie between 20% and 80% along each segment’s
length).

acl: the same as ac, but in each picture there is an additional distracting line crossing neither of the
other line segments.

at: distinguishes between images containing an angle (between 20◦ and 160◦) and a triangle (with
each angle between 20◦ and 160◦ ).

atl: the same as at, but with an additional distracting line, crossing neither of the line segments
forming the angle and the triangle.

sbl: requires classifying the images into those having blunt (between 100◦ and 160◦ ) and those
having sharp (between 20◦ and 80◦ ) angles in them. Each image also contains an additional line
segment, crossing neither of the line segments forming the angle.

sbt: requires classifying the images into those having blunt (between 100◦ and 160◦ ) and those
having sharp (between 20◦ and 80◦ ) triangles in them, in the picture there is also a distracting line
that does not intersect any of the two triangles.

sb2l: the same as sbl, but has two additional distracting lines, crossing neither of the line segments
forming the angle.

cnc: distinguishes between a pair of crossing and a pair of non-crossing lines (the crossing point must
lie between 20% and 80% of each segment length).

Each stimulus was generated by randomly selecting the parameters describing each figure (length
and orientation of straight segments, amplitude and orientation of the angles) and verifying that all
conditions were satisfied. Four different types of random backgrounds were generated with four
patterns changing at different rates. For our experiments we generated 350.000 stimuli for each
condition. Each dataset was split into three sets containing respectively 330.000, 10.000 and 10.000
data points. These sets were used as training, validation and test sets.

5 Results

We were interested in comparing the amount of CF for networks trained with the Fine Tuning
procedure versus with the Gradual Tuning procedure. In the first section (5.1) we present all the
experiments where the Task-A is a classification performed on a single dataset. We tested the two
procedures in the cases where Task-A and Task-B are rather simple, when Task-A and Task-B are
more complex but similar, and when Task-A and Task-B are more complex and rather different. In
section 5.2 we study the amount of CF for a network trained on a task for which we suppose the
network has good features. To guarantee this, Task-A was actually composed of 5 binary classification
tasks on which the network was trained at the same time. The network was then trained on Task-B.
In the first experiment Task-B is very similar to one of the tasks the network was trained on during
Task-A. In the second experiment instead the classification task of Task-B is quite different from the
classification tasks of Task-A. The results of all the experiments presented in paper are reported as
the percentage of misclassified data on the test set. Frequently in the next paragraph we will refer to
the error on the validation set, this refers to the percentage of misclassified data on the validation set.

5.1 Single task experiment

The first experiment was on MNIST. During Task-A a network was trained on MNIST-04. The
training was stopped if the error on the validation set did not go below its minimum for 20 consecutive
epochs. The percentage of misclassification on the test set was reported. The training was done using
a fixed learning rate λ = 0.01. Once the training was over, the output of the last hidden layer of the
network was connected to five extra output neurons for the classification on MNIST-59.

The output layer parameters were randomly initialized. Training on Task-B was executed with both
the Fine Tuning procedure and the Gradual Tuning procedure. In both cases the training was stopped

4



Table 1: MNIST-04→ MNIST-59 (500-500). In the column named Task-B the mean percentage
of misclassified on the test set calculated over 5 repetitions is reported together with its standard
deviation. In the column named Task-A the first error reported for each entry is the percentage of
misclassified cases on Task-A after the training on that task. The second and third value are the mean
and the standard deviation of the percentage of misclassified data on Task-A after the training on
Task-B. Column Epochs gives the mean and standard deviation of the number of epochs the network
was trained on Task-B.

Fine Tuning Gradual Tuning
Reg Task-B Task-A Epochs Task-B Task-A Epochs
No 1.56± 0.07 1.2→ 4.5± 1.2 91± 14 1.54± 0.05 1.2→ 1.83±0.05 77± 13
L1 1.51± 0.03 1.2→ 3.5± 0.6 79± 21 1.44± 0.03 1.2→ 2.02±0.02 95± 7
Drop 1.60± 0.07 1.3→ 8.2± 0.9 61± 11 1.41± 0.06 1.3→ 4.4± 1.1 113±38

when the error on the validation didn’t go below its minimum in 20 epochs. Moreover in the Gradual
Tuning procedure, the training on a lower layer was allowed when the difference in the error on
the validation set between two consecutive epochs was less than 0.1%. The network was trained
on Task-B five times for each of the two training procedures, each time re-initializing the output
layer. The entire experiment, training on Task-A and then on Task-B was executed using different
regularization techniques. In particular we tried to train the network without any regularization, with
L1, and with Dropout regularization. In tables 1 and 2 the results relative to this experiment are
reported for the two network architectures. In particular in the section of the table named Fine Tuning
we report the results relative to the training with the Fine Tuning procedure, while in the part of the
table named Gradual Tuning we report the results obtained with the Gradual Training technique. The
column labeled Task-B contains the error on the test set for Task-B. The value reported in the table is
the mean error obtained over the five repetitions and its standard deviation. Each entry of the column
Task-A contains two error values. They refer to the error of the network on Task-A at the end of the
training on Task-A and at the end of the training on Task-B. This second value is actually the mean
error obtained over the five repetitions and it is reported with its standard deviation. Finally in the
column labeled Epochs, we report the mean number of epoch the network was trained on Task-B
with its standard deviation.
Looking at the two tables it is evident that the network trained with the Fine Tuning procedure tends
to forget much more than the one trained with the Gradual Tuning procedure. If we compare the
error on Task-A after training on Task-B, we notice that the percentage of misclassifications in the
case of Gradual Tuning is generally around 2 times less than the percentage obtained with the Fine
Tuning. This happens despite the fact that in many cases the network trained with the Gradual
Tuning procedure is trained for more epochs than the one trained with the Fine Tuning procedure.
At the same time the network tends to perform similarly on the new task (Task-B) independently
of the training procedure used. Finally it is also clear that the network trained with the Dropout
regularization tends to forget much more than the network trained with L1 regularization or the one
trained without regularization. In order to verify the results obtained on MNIST on more complex

Table 2: MNIST-04→MNIST-59 (1000-1000-1000). See Table 1 for a detailed presentation of the
values reported.

Fine Tuning Gradual Tuning
Reg Task-B Task-A Epochs Task-B Task-A Epochs
No 2.01± 0.03 1.5→ 4.3± 0.9 117±70 1.99± 0.05 1.5→ 2.6± 0.1 147±39
L1 1.92± 0.05 1.6→ 3.4± 1.3 188±54 1.88± 0.02 1.6→ 2.0± 0.1 245±59
Drop 1.66± 0.05 1.3→ 12.1±0.6 102±17 1.52± 0.05 1.3→ 3.9± 0.3 138±35

datasets we did two other experiments using the synthetic datasets. In the first experiment Task-A and
Task-B are very similar, while in the second the two tasks are more different. In the first experiment
we used as Task-A the classification of the dataset acl and as Task-B the classification on ac. These
are very similar tasks, with the first being more complex than the second because of the presence
of a distracting line in the pictures. The tests were executed on the two network architectures and

5



the results are reported in tables 3, 4. In this case the difference between the Fine Tuning and the

Table 3: acl→ ac (500-500). See Table 1 for a detailed presentation of the values reported.

Fine Tuning Gradual Tuning
Reg Task-B Task-A Epochs Task-B Task-A Epochs
No 2.50± 0.01 9.0→ 18.8±0.3 47± 5 2.50± 0.05 9.0→ 16.1± 0.3 92± 37
L1 2.10± 0.10 7.1→ 22.6±1.7 38± 7 2.11± 0.16 7.1→ 17.1± 2.4 45± 23
Drop 3.87± 0.18 7.7→ 16.7±1.3 115±40 3.76± 0.12 7.7→ 17.5± 0.5 151±17

Gradual Tuning is less evident. The network performs almost the same on Task-B, but this time the
amount of forgetting on Task-A is also nearly the same for the two procedures. The only exception is
the big network (1000-1000-1000) when trained with L1 regularization. In that case we have again
that the amount of forgetting is almost twice for Fine Tuning as compared to Gradual Tuning. The

Table 4: acl→ ac (1000-1000-1000). See Table 1 for a detailed presentation of the values reported.

Fine Tuning Gradual Tuning
Reg Task-B Task-A Epochs Task-B Task-A Epochs
No 2.25± 0.04 6.7→ 13.3±0.2 73± 52 2.33± 0.09 6.7→ 9.5± 0.3 47± 16
L1 1.60± 0.05 4.7→ 20.5±2.9 23± 13 1.61± 0.06 4.7→ 11.9± 3.2 37± 15
Drop 1.58± 0.10 5.9→ 20.5±1.1 113±21 1.55± 0.18 5.9→ 20.0± 1.5 145±46

results presented in tables 5 and 6 are relative to a network that was first trained on the dataset acl
(Task-A) and then on atl (Task-B). Task-A is the same as for the previous experiment. Task-B is
more complex when compared to Task-B of the previous experiment. Moreover in this experiment
Task-A and Task-B are much less similar than in the previous experiment. This time the amount of
forgetting seems to be different for the big network when trained without regularization or with L1
regularization (see Table 6). In these two cases the network trained with Gradual Tuning forgets
approximately half as much as the network trained with Fine Tuning. No particular difference seems
to be present in the small network.

Table 5: acl→ atl (500-500). See Table 1 for a detailed presentation of the values reported.

Fine Tuning Gradual Tuning
Reg Task-B Task-A Epochs Task-B Task-A Epochs
No 4.31± 0.12 9.1→ 27.1±0.3 78± 16 4.65± 0.12 9.1→ 24.1± 0.1 120±28
L1 2.32± 0.33 7.1→ 40.2±3.7 77± 48 2.09± 0.28 7.1→ 36.6± 1.9 108±20
Drop 8.21± 1.10 7.7→ 38.0±2.6 158±46 4.29± 0.14 7.7→ 46.2± 0.2 293± 4

Considering all the experiments we described so far we found that the network trained with dropout
tends to suffer more from CF than the one trained with L1 regularization, both for Fine Tuning and
Gradual Tuning procedures. Moreover we often find that performance on the second task (Task-B)
is often similar for the two regularization techniques. This may be due to the fact that the networks
were trained with a fixed learning rate, while often dropout regularization is used either with a fixed
learning rate, but bigger than the one we used, or with update of the weights with momentum. Such
solutions were not adopted here because we wanted to use the same training procedure across all the
experiments.

5.2 Multiple tasks

In this section we describe the experiments for which Task-A consisted in training the network on
several tasks at the same time. It is well known that a network trained at the same time on a set
of similar tasks develops better features for each of the tasks than a network trained on just one of
the tasks. This is in part due to the fact the network trained on several tasks is exposed to more
data and in part to the ability of the network to transfer learning from the different tasks. So we

6



Table 6: acl→ atl (1000-1000-1000). See Table 1 for a detailed presentation of the values reported.

Fine Tuning Gradual Tuning
Reg Task-B Task-A Epochs Task-B Task-A Epochs
No 3.96± 0.09 6.7→ 25.1±0.8 120±56 5.92± 0.07 6.7→ 12.0± 0.1 191±12
L1 1.68± 0.17 4.7→ 40.0±1.0 56± 9 1.50± 0.02 4.7→ 23.4± 1.9 56± 6
Drop 1.95± 0.34 5.9→ 48.6±0.2 167±57 1.28± 0.17 5.9→ 39.8± 0.6 205±57

Table 7: acl + sb2l + sbl + sbt + cnc→ ac (1000-1000-1000). The results are reported following the
same schema as in table 3, but this time Task-A consisted in training the network on 5 datasets. Each
row in column Task-A refers to one of the datasets. The three numbers reported are respectively the
error on the task at the end of Task-A, the mean error and its standard deviation at the end of Task-B
over 5 repetitions.

Fine Tuning Gradual Tuning
Reg Task-B Task-A Epochs Task-B Task-A Epochs

No 1.66± 0.06

7.0→ 11.6± 0.4 (acl)

42± 29 1.82± 0.08

7.0→ 10.2± 0.3

98± 54
5.5→ 7.4± 0.2 (sb2l) 5.5→ 6.6± 0.3
2.4→ 3.9± 0.4 (sbl) 2.4→ 2.8± 0.1
1.5→ 2.3± 0.1 (sbt) 1.5→ 1.8± 0.1
0.9→ 1.2± 0.1 (cnc) 0.9→ 1.1± 0.1

L1 0.92± 0.02

4.4→ 21.0± 1.0 (acl)

26± 5 0.89± 0.04

4.4→ 14.8± 0.8

36± 5
3.3→ 6.3± 0.5 (sb2l) 3.3→ 5.4± 0.3
1.4→ 5.6± 0.5 (sbl) 1.4→ 2.1± 0.0
0.7→ 2.6± 0.4 (sbt) 0.7→ 1.6± 0.1
0.4→ 0.7± 0.1 (cnc) 0.4→ 0.8± 0.0

Drop 0.73± 0.08

4.1→ 11.5± 1.6 (acl)

58± 22 0.70± 0.10

4.1→ 11.6± 1.7

88± 23
2.4→ 6.0± 0.7 (sb2l) 2.4→ 6.1± 0.6
0.8→ 4.1± 0.7 (sbl) 0.8→ 4.1± 0.7
0.2→ 1.0± 0.2 (sbt) 0.2→ 1.1± 0.2
0.4→ 0.5± 0.0 (cnc) 0.4→ 0.6± 0.1

were curious to see how much a network trained on several tasks would suffer from CF, and how
the performance would differ for the Gradual Tuning and the Fine Tuning procedures. In the two
experiments, during Task-A the network was trained on 5 datasets at the same time. The tasks we
chose were the following: acl, sb2l, sbl, sbt, cnc. The network we used for this experiment was a
network of three hidden layers, each layer having 1000 nodes. The last layer was connected to five
output layers each one having two nodes. During the training, batches of 20 data points from the
different datasets were alternated in a fixed order. At the end of each epoch the error on the validation
set was calculated for all of the five datasets. If all of the errors on the validation were below their
minimum the network configuration was stored. If any of the 5 errors did not go below its minimum
in 20 epochs the training was stopped. Once the training was over a sixth output layer was connected
to the last hidden layer and the network was trained on Task-B. The training on Task-B was repeated
5 times in the two conditions (Fine Tuning and Gradual Tuning) each time by randomly initializing
the new output layer. In the experiments Task-B always consisted of a single binary classification
task on one of the datasets described in 4.
In the first experiment we evaluated the amount of CF in the case where Task-B is a simplified

version of one of the tasks proposed in Task-A; we used as Task-B the ac task. The results are
reported in table 7. The results are presented in the table following the same schema as in the previous
table, the only difference consists in the fact that the column named Task-A now has the results
relative to the five datasets before and after the training on Task-B. We can now compare the amount
of forgetting on acl and the performance on ac obtained in this experiment with the performance
obtained in the experiment described in the previous section where the network was trained first
on acl and then on ac(see table 4). It is evident that the performance on ac is much better in this
case than before. Regarding the amount of CF that the two networks suffer, the results seem very
similar and it is not easy to say whether CF for the network that has been trained on several tasks

7



Table 8: acl + sb2l + sbl + sbt + cnc→ atl (1000-1000-1000). See Table 7 for a detailed presentation
of the values reported.

Fine Tuning Gradual Tuning
Reg Task-B Task-A Epochs Task-B Task-A Epochs

No 2.68± 0.11

7.0→ 17.6± 0.7 (acl)

116± 66 3.46± 0.12

7.0→ 11.8± 0.1

153± 59
5.5→ 16.7± 0.9 (sb2l) 5.5→ 11.1± 0.1
2.4→ 21.8± 2.1 (sbl) 2.4→ 9.1± 0.1
1.5→ 4.2± 0.2 (sbt) 1.5→ 2.6± 0.1
0.9→ 7.1± 0.7 (cnc) 0.9→ 1.5± 0.1

L1 1.29± 0.06

4.4→ 17.8± 4.0 (acl)

17± 2 1.14± 0.01

4.4→ 11.3± 0.6

33± 5
3.3→ 12.6± 1.2 (sb2l) 3.3→ 9.0± 0.2
1.4→ 7.5± 1.3 (sbl) 1.4→ 5.3± 0.4
0.7→ 6.5± 2.4 (sbt) 0.7→ 1.5± 0.1
0.4→ 19.3± 4.8 (cnc) 0.4→ 5.1± 0.6

Drop 0.59± 0.09

4.1→ 12.4± 1.9 (acl)

95± 40 0.52± 0.06

4.1→ 10.1± 0.7

138± 22
2.4→ 9.5± 1.1 (sb2l) 2.4→ 8.5± 0.5
0.8→ 8.0± 0.3 (sbl) 0.8→ 5.0± 0.4
0.2→ 3.0± 0.5 (sbt) 0.2→ 2.0± 0.1
0.4→ 29.6± 6.2(cnc) 0.4→ 17.6± 2.5

actually is less strong. The effect of the Gradual Tuning in this case is also quite similar to the effect
we obtained on the network trained on a single task. As before we observe that the network trained
with the Gradual Tuning procedure has very similar performances on the new task when compared
with the network trained with the Fine Tuning procedure. Also the network trained with the Gradual
Tuning procedure tends to forget less than the one trained normally, although the improvement in this
case is less evident than it was in other cases.
In this second experiment Task-B is very different from any of the classifications performed during
Task-A because we chose Task-B to be the atl task. The results are reported in table 8. This
experiment is similar to the last experiment of the previous section. In that case we trained a network
first on acl and then on atl(see table 6). The results on Task-B are much better for the network that
was trained on several tasks during Task-A, when compared to the network that was trained just on
one task 6). Concerning the amount of CF on task acl two considerations are interesting. First, this
network forgets much less than the network trained on a single task during Task-A. This suggests
that having better features helped reducing CF. Regarding the second consideration let’s compare the
results in the tables 7 and 8. These were obtained with the same Task-A. The amount of forgetting on
acl is much less in the experiment reported in table 7, where the new task is very similar to the old
one. Lastly the Gradual Tuning technique seems to be quite effective in this case, the amount of CF
being reduced in all the cases, most of the time being from 1.5 to 5 times less.

6 Discussion

The Gradual Tuning technique proved to be a good strategy for reducing the amount of CF in
a transfer learning task. The CF was smaller in almost all the experiments we described in the
paper. Regarding the performance on a new task, we can say that the networks trained with the two
procedures showed similar performance in all the experiments except in the MNIST experiment,
where the networks trained with Gradual Tuning showed better results. Although we didn’t formally
verify it, it is most probably the case that compared to Fine Tuning, Gradual Tuning tends to preserve
more of the features of the original task. For this reason we would have expected that, at least when
the two tasks are very similar, the network trained with Gradual Tuning, in addition to forgetting less
on the old task, would also outperform the network trained with Fine Tuning on the new task. Further
experiments are necessary to understand why this was not the case.

Acknowledgments

This work was funded by ERC Advanced Grant 323674 “FEEL” and ERC proof of concept grant
692765 "FeelSpeech" to Kevin O’Regan.

8



References
[1] Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep

neural networks with multitask learning. In Proceedings of the 25th international conference on
Machine learning, pages 160–167. ACM, 2008.

[2] Guglielmo Montone, J Kevin O’Regan, and Alexander V Terekhov. The usefulness of past
knowledge when learning a new task in deep neural networks. Cognitive Computation Workshop,
NIPS, 2015.

[3] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[4] Rupesh K Srivastava, Jonathan Masci, Sohrob Kazerounian, Faustino Gomez, and Jürgen Schmid-
huber. Compete to compute. In Advances in neural information processing systems, pages
2310–2318, 2013.

[5] Alexander V Terekhov, Guglielmo Montone, and J Kevin O’Regan. Knowledge transfer in deep
block-modular neural networks. In Conference on Biomimetic and Biohybrid Systems, pages
268–279. Springer, 2015.

[6] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in
deep neural networks? CoRR, abs/1411.1792, 2014.

9


	Introduction
	Gradual training procedure
	Experiments
	The tasks
	Results
	Single task experiment
	Multiple tasks

	Discussion

