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The relationship between the sensory signal of the
photoreceptors on one hand and color appearance and
language on the other hand is completely unclear. A

recent finding established a surprisingly accurate
correlation between focal colors, unique hues, and so-
called singularities in the laws governing how sensory
signals for different surfaces change across illuminations.
This article examines how this correlation with
singularities depends on reflectances, illuminants, and
cone sensitivities. Results show that this correlation
holds for a large range of illuminants and for a large
range of sensors, including sensors that are
fundamentally different from human photoreceptors. In
contrast, the spectral characteristics of the reflectance
spectra turned out to be the key factor that determines
the correlation between focal colors, unique hues, and
sensory singularities. These findings suggest that the
origins of color appearance and color language may be
found in particular characteristics of the reflectance

spectra that correspond to focal colors and unique hues.

Introduction

How is the color signal provided by retinal
photoreceptors related to the subjective experience of
color and the color categories used to communicate
about color? Answers to this question may elucidate
the understanding of color vision as well as the general
relationship between perception and language and may
enrich the concept of subjective experience.

Background and relevance

Color language and color appearance

Colors are communicated through color terms, such
as red, pink, and purple. These color terms categorize
the multitude of perceivable colors into groups—the
color categories. The corresponding categories share
some statistical regularities across languages (Kay &
Regier, 2003; Lindsey & Brown, 2006, 2009). Since the
prototypes of the categories are representative for the
whole category, they are also called focal colors. The
prototypes of red, yellow, green, and blue are
particularly stable across languages (Regier, Kay, &
Cook, 2005; Webster et al., 2002). It has been argued
that the prototypes of the categories are salient because
they are easier to name and memorize than other colors
(R. W. Brown & Lenneberg, 1954; Regier, Kay, &
Khetarpal, 2007; Rosch Heider, 1972).

The subjective experience of color is called color
appearance. Colors of a given appearance can always be
obtained through the combination of the so-called
unique hues (Abramov & Gordon, 1994; Valberg, 2001).
Apart from black and white, these unique hues
correspond to pure red, yellow, green, and blue, where
the word pure means that the hue does not contain any
of the other hues. For example, unique red is neither
yellowish nor bluish (nor whitish nor blackish). There
are some differences between unique hues and focal
red, yellow, green, and blue. Nevertheless, these focal
colors and unique hues coarsely correspond to each
other.

However, color categories and focal colors are not
related to the sensory mechanisms of color vision
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(Bachy, Dias, Alleysson, & Bonnardel, 2012; A. M.
Brown, Lindsey, & Guckes, 2011; Cropper, Kvansakul,
& Little, 2013; Lindsey et al., 2010; Malkoc, Kay, &
Webster, 2005; Witzel & Gegenfurtner, 2011, 2013,
2014). Unique hues do not correspond to known
mechanisms of color vision (Mollon, 2009; Valberg,
2001; Wuerger, Atkinson, & Cropper, 2005; for a
review see Witzel, 2011). Finally, focal colors and
unique hues are not salient in a strict perceptual sense
because they are not more colorful than other colors
(Witzel & Franklin, 2014; Witzel, Maule, & Franklin,
in prep). Taken together, the origin of color categories,
focal colors, and unique hues as well as their
relationship to known mechanisms of color perception
remain unknown.

Sensory singularities

A new approach proposed by Philipona and
O’Regan (2006) established a relationship between the
color signal at the level of the photoreceptors and the
focal colors and unique hues. The color signal is defined
by the activation of the three photoreceptors, the cones.
Each cone is particularly sensitive in a specific region of
the visible spectrum of light. Since one cone is
maximally sensitive to comparatively short wave-
lengths, one to comparatively long wavelengths, and
one to wavelengths in between, they are called short-,
middle-, and long-wavelength cones, or S-, M-, and L-
cones, respectively. The combined excitation of these
three cones carries the information about wavelength
differences and hence the color signal. To refer to a
triad of cone excitations, the term LMS signal is used
here.

The three cone excitations that make up the LMS
signals may be represented in a three-dimensional
space—the cone-excitation space. Figure 1 illustrates
LMS signals in this space for natural outdoor lighting,
for fluorescent illuminations, for a sample of randomly
constructed lights, and for monochromatic lights (see
the Illumination section for details).

Low-level stages of color processing beyond the level
of the photoreceptors are known (e.g., Gegenfurtner,
2003; Gegenfurtner & Kiper, 2003). However, Phili-
pona and O’Regan’s (2006) approach focuses on the
LMS signal itself. Unlike previous approaches, Phi-
lipona and O’Regan (2006) did not examine how a
particular LMS signal is processed in the visual system.
Instead, they inspected how the variation of LMS
signals is constrained by particular reflectances.

The LMS signal is determined by the light that
impinges on the retina, called the impinging light. More
precisely, it depends on the wavelength composition
(here referred to as the spectrum) of the impinging light
(henceforth referred to as the impinging spectrum).
Impinging light can come directly from a light source

(i.e., emitted light), or it can be reflected off a surface
(i.e., reflected light). In the latter case, the impinging
spectrum is the product of the spectrum of the
illumination (i.e., the illuminant) and the spectral
reflectance properties of the surface (i.e., the reflectance
spectrum). The LMS signal can be computed as the dot
product between the impinging spectrum and the
sensitivities of the human photoreceptors (i.e., cone
fundamentals).

When the illumination changes, the reflected spec-
trum changes. The change of the reflected spectrum
implies a change of the reflected LMS signal. The new
approach of Philipona and O’Regan (2006) discovered
that the way in which the LMS signal changes across a
wide range of illuminations is particular for focal colors
and unique hues.

Let us call the LMS signal that would result if the
light of the illumination fell directly into the eye—that

Figure 1. LMS signal for a wide range of illuminations. Axes

correspond to long-, middle-, and short-wavelength cone

excitations (L, M, and S, respectively). Panel a shows all three

dimensions, panel b shows only L and M, and panel c shows

only L and S. Natural, random-spline, fluorescent, and

monochromatic lights are shown as black, red, green, and blue

dots, respectively. Since the intensities of the monochromatic

lights are much lower than those of the other illuminants, their

LMS values are multiplied by 20 to illustrate their distribution in

this plot. Note that L- and M-excitations (panel b) are strongly

correlated due to the overlap of cone absorption spectra and

that natural illuminants (black dots) are not uniformly

distributed in cone-excitation space.
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is, without being reflected by a surface—the illuminant
signal. The light reflected off a white surface that
perfectly reflects the light of the illumination would also
produce the illuminant signal when falling into the eye.
Let us call the LMS signal produced by the light
reflected from a surface the reflected signal. The
illuminant signal is mapped to the reflected signal in a
way that is particular to the reflectance of a surface.
The color of a surface may be thus seen as a map that
transforms an incoming illuminant LMS signal into an
outgoing reflected LMS signal. We now discuss the
dimensionality of this mapping as determined by the
singularity of the surfaces.

To illustrate the idea of singularity, let us tempo-
rarily assume that the illuminant signal could be
spherically distributed as the black dots in the graphs in
the lower rows of Figures 2 and 3. (In fact, as seen in
Figure 1, real illuminant signals are not spherically
distributed; we come back to this issue later.) The red
dots in Figures 2 and 3 illustrate the reflected signals
that correspond to the illuminant signals when reflected
by a particular surface. The corresponding reflectance
spectra of the surfaces are shown in the small graphics
in the top row of Figures 2 and 3.

Figure 2 illustrates the distribution of the reflected
signals for examples of surfaces that are not singular.
The columns of Figure 2 (from left to right) correspond

to a white (Munsell chip N9.5), a slightly pinkish
(Munsell chip 2.5R9/2), a light turquoise (Munsell chip
5BG9/2), and a dark turquoise (Munsell chip 5BG2/4)
surface. For all these surfaces, the distribution of the
reflected signal (red dots in panels e through h) covers
all three dimensions of cone-excitation space. This is
also true for the distribution of red dots in panel h. The
variability of the red dots in panel h is strongly reduced
because much less light is reflected by the dark surface
in panel d than by the light surfaces in panels a through
c. Despite the smaller variability, the distribution in
panel h is three-dimensional.

In contrast, Figure 3 illustrates the distribution of
the reflected signals for examples of surfaces that are
singular. Singular surfaces produce distributions of
reflected signals that are restricted to a subspace of the
LMS space with a lower dimensionality than the
illuminant signal. For the surfaces in Figure 3, one or
even two dimensions of the distributions of the reflected
signal are negligible. The columns of Figure 3
correspond to a red (Munsell chip 5R4/14), a yellow
(Munsell chip 2.5Y8/16), a green (Munsell chip 10GY5/
12), and a blue (Munsell chip 7.5PB3/12) surface. The
reflected signal (red dots) of the focal red (panel a),
green (panel c), and blue (panel d) surfaces vary quasi
one-dimensionally—that is, along a line in three-
dimensional cone-excitation space. The reflected signal

Figure 2. Reflected signal under illumination change for nonsingular surfaces. Each column corresponds to a Munsell chip with a

nonsingular reflectance. The titles refer to the Munsell labels of the chips. The first row (panels a through d) shows the reflectance

spectra of the respective surfaces. The x-axis represents wavelength (in nm), and the y-axis represents reflectance. The second row

(panels e through h) shows LMS signals in cone-excitation space (axes as in Figure 1). Black dots correspond to uniformly distributed

illuminant signals, and red dots correspond to the corresponding reflected signals of the respective Munsell chips. The uniform

distribution of the illuminant signals in this graphic is used for illustration only; real LMS signals are not uniformly distributed (cf.

Figure 1). Note that the reflected signal of all the chips in this graphic varies along three dimensions.
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of the yellow surface (panel b) varies quasi two-
dimensionally—that is, across a plane in cone-excita-
tion space. To further illustrate this observation, the
second and third rows of Figure 3 show the variation of
the reflected signal from two perspectives. Note in
particular that the reflected signal of the yellow surface
is seen from the profile and from above the plane, hence
illustrating the planar distribution. The mapping of the
illuminant signal onto the reflected signal by these
surfaces is approximately singular in a mathematical
sense.

As mentioned above, real illuminant signals and
LMS signals in general are not uniformly distributed in
cone-excitation space. As shown in Figure 1, L- and M-
cone excitations are always correlated due to the
overlap of the L- and M-cone sensitivities. As a result,
the distribution of the real illuminant signals in Figure
1 is close to a plane and is not spherical like the
distribution used for illustration purposes in Figures 2
and 3.

However, the fact that LMS signals are restricted in
their variation does not undermine the observation that
the mapping of the illuminant to the reflected signal is
singular for certain surfaces. Indeed, the singularities of
the surfaces would be the same if we used decorrelated,
orthogonal signals, such as L � M, L þM, and S,
instead of the cone excitations L, M, and S (cf.
Supplementary Figures S1 through S3 and
Supplementary Figure S4a in the Decorrelated signals
section of the supplementary materials).

Philipona and O’Regan (2006) observed the notable
fact that the most singular surfaces were almost the
same as the focal colors determined in the World Color
Survey (Regier et al., 2005). Philipona and O’Regan
(2006) also showed that, under certain assumptions,
this observation also holds for surfaces that correspond
to unique hues. Hence, surfaces with focal colors and
unique hues are more singular in a mathematical sense
than other surfaces.

Vazquez-Corral, O’Regan, Vanrell, and Finlayson
(2012) further supported this observation. In a follow-

Figure 3. Reflected signal under illumination change for singular surfaces. The variation of the reflected signal (red dots) of surfaces

with the highest singularity indices is illustrated. The format of the first (panels a through d) and second (panels e through h) rows is

as in Figure 2; the third row (panels i through l) shows the variation in the LM plane to highlight differences in dimensionality across

the surfaces. In contrast to the nonsingular surfaces in Figure 2, the variation of these singular surfaces is almost one-dimensional

(red, green, and blue) or two-dimensional (yellow; cf. panels f and j).
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up study, they showed that the variation of the reflected
signal may be represented by three new sensors, which
they called spectrally sharpened sensors. The number of
spectrally sharpened sensors that respond to a light
directly reflects the singularity of the surfaces. Hence,
focal colors and unique hues excited fewer than three of
the spectrally sharpened sensors.

Sensorimotor theory of color appearance and naming

These findings imply that focal and unique red,
yellow, green, and blue have particular properties
under changing illuminations that distinguish these
colors from all the other colors. The sensory singularity
of these surfaces suggests that the way the reflected
signal from these surfaces changes across illuminations
is more predictable, in the sense that it varies along
fewer dimensions.

Another way of thinking about singularities is to
realize that the way singular surfaces affect incoming
light can be described by only one or two parameters
instead of the three parameters (the three eigenvalues)
that would be necessary for most surfaces. Seen from
this point of view, we can then understand that
achromatic surfaces should also be considered special:
The way they affect incoming light can be described by
a single parameter—namely, the surface lightness. The
LMS value of the incoming light is multiplied by the
lightness to obtain the LMS value of the light reflected
off the surface.

Consequently, the LMS signal of surfaces with those
colors (red, yellow, green, blue, and achromatic colors)
might be more reliable across illuminations, and they
may act as points of reference, or perceptual anchors,
for the identification of colors across illumination
changes. This might explain why these colors are
associated with a particular subjective experience and
why the color categories used in communication
organize around these particular color sensations.

Due to adaptation and other functions of color
constancy, changes of the LMS signal do not neces-
sarily correspond to perceived color changes. However,
singularities may play a much more important role
under fast changes of illumination. In this case, the
observer cannot completely adapt to the illumination.

In the natural environment, illuminations change
mostly slowly by themselves (e.g., daylight from dawn
to dusk). Fast changes in illumination occur when the
observer moves the surfaces (e.g., from shadow to
sunlight or under a canopy of trees). Fast changes also
happen when the observer tilts a surface under different
simultaneous illuminations. Hence, the sensory singu-
larities that relate surfaces to color categories become
evident mainly when the observer interacts with objects
in a way that shows their surfaces under different
illuminations.

Thus, according to this approach, color appearance
and color language originate through the observer’s
interaction with the visual environment. The particular
stability of the light reflected off focal color surfaces
under different illuminants, as expressed by their
singularity, may explain why the focal red, yellow,
green, and blue are chosen as special color prototypes
across languages and why these colors act as unique
hues in color appearance. In this case, color language
and the subjective experience of color would be shaped
by the observers’ interaction with the visual environ-
ment, as suggested by the sensorimotor theory of visual
experience (O’Regan, 2011; O’Regan & Noe, 2001a,
2001b; Philipona & O’Regan, 2006).

Objective

The previous studies (Philipona & O’Regan, 2006;
Vazquez-Corral et al., 2012) that provided evidence for
the relationship between focal colors, unique hues, and
sensory singularities used particular kinds of illumi-
nants and surfaces and the sensitivities of human
photoreceptors. More precisely, they used natural
illuminants and a limited set of standard color chips
(Munsell chips) with particular properties (maximal
saturation). As we explain in detail in the respective
sections below, those illuminants, reflectance spectra,
and human photoreceptors have particular properties
that might be responsible for the relationship that was
observed between sensory singularities, focal colors,
and unique hues.

The question arises of whether this relationship
exists only for this particular selection of natural
illuminants, human photoreceptors, and maximally
saturated Munsell chips. In particular, if this relation-
ship exists only for human photoreceptors, this would
highlight the importance of the characteristics of the
human visual system for the singularities of focal colors
and unique hues. In contrast, if the relationship holds
only for natural illuminants or the reflectances of
maximally saturated Munsell chips, this would em-
phasize the role of factors in the visual environment.
Finally, the dependence of this relationship on a
combination of these factors may indicate that the
visual system is adapted to the visual environment in a
way that results in the particular pattern of singularities
that is related to focal colors and unique hues. In any
case, results will clarify which of these three kinds of
factors are worth being studied more closely in future
research.

The present study investigates whether the relation-
ship between sensory singularities, focal colors, and
unique hues depends on the characteristics of the
illuminants, the reflectances, or the sensors. For this
purpose, we examine this relationship (a) using
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different kinds of artificial illuminants, (b) using
sensors with spectral sensitivities other than the human
photopigments, and (c) with different sets of reflectance
spectra that still result in colors similar to Munsell
chips under neutral illumination. Preliminary results of
these investigations were previously presented (Witzel,
Cinotti, & O’Regan, 2014). In the supplementary
materials, we also provide a set of MatLab functions
for computing sensory singularities. These functions
are slightly different from those used in previous
publications in a way that allows for more robust
calculations across the different conditions investigated
in the present article.

General method

In our investigations, the results of Philipona and
O’Regan (2006) were the reference to evaluate how
LMS signal variability is related to focal colors and
unique hues when using different illuminants, reflec-
tances, and sensors. For this reason, we used largely the
same calculations and data as Philipona and O’Regan
(2006). As explained below, we slightly modified the
algorithms and used a different data set for the human
photoreceptors. These slight deviations from the
original method were done to improve and generalize
the method for the analyses of the present article.
However, these modifications did not affect the
patterns obtained with the original method of Phi-
lipona and O’Regan (2006).

Data

Illuminants, photoreceptors, and reflectances

Following Philipona and O’Regan (2006) as well as
Vazquez-Corral et al. (2012), we used measured and
simulated daylight illuminants. The sample of mea-
sured illuminants included 99 measurements of daylight
spectra in Grenada (Romero, Garcia-Beltran, &
Hernandez-Andres, 1997) and 238 daylight spectra of
the forests in Maryland (Chiao, Cronin, & Osorio,
2000). The simulated daylight illuminants were based
on the three basis functions specified by Judd and
colleagues (Das & Sastri, 1965; Dixon, 1978; Judd et
al., 1964; Romero et al., 1997; Sastri & Das, 1966, 1968;
for a review see Maloney, 1999). The parameters that
combine these basis functions were fixed so that the
resulting spectra produced chromaticities within the
area span by standard illuminants D45, D65, and D85.
As in Philipona and O’Regan (2006), illuminant spectra
were normalized so that their maximum corresponded
to 1.

In order to represent the sensitivity of the human
photoreceptors, Philipona and O’Regan (2006) applied

108 Stiles and Burch color-matching functions (Stiles &
Burch, 1959), and Vazquez-Corral et al. (2012) used the
cone fundamentals of Smith and Pokorny (1975). We
used the 28 Stockman-Sharpe cone fundamentals of
Stockman and Sharpe (2000) for the simple reason that
they directly refer to the sensitivity of the human
photoreceptors and are particularly precise. In any
case, the results do not depend on which measurements
of cone sensitivities are used (for details, see the Sensors
section).

The reflectances for glossy Munsell chips were
retrieved from the database of the Joensuu Color
Group (Kohonen, Parkkinen, & Jaaskelainen, 2006;
Parkkinen, Hallikainen, & Jaaskelainen, 1989), which
is now available via the University of Eastern Finland
(http://www.uef.fi/fi/spectral). The Munsell system ar-
ranges color chips by their hue (Munsell hue), lightness
(Munsell value), and chroma (Munsell chroma; Munsell
Color Services, 2007). To establish the relationship
between singularities and focal colors, the reflectance
spectra of a set of 320 maximally saturated Munsell
chips were used. The Munsell chips varied in 40 levels
of hue and eight levels of lightness (Munsell value¼ 2–
9) and had maximal Munsell chroma. Throughout this
article, the set of Munsell chips is arranged vertically by
its eight lightness levels and horizontally by its 40 hue
levels. Figure 4a illustrates the variation of Munsell
chroma across the 83 40 chips. This choice of Munsell
chips allows the comparison of the singularities of these
reflectances with measurements of focal colors and
unique hues.

Focal colors and unique hues

Data on focal colors were obtained from the World
Color Survey, a cross-cultural study on color naming
(Regier et al., 2005). In this study, observers from 110
nonindustrialized societies were asked to indicate the
typical colors of the color categories that correspond to
the basic color terms of their language. They could
choose among the aforementioned set of 320 chromatic
and 10 achromatic (grayscale) Munsell chips. The
relative frequencies of prototype choices across all
observers indicate the focality of the Munsell chips—
that is, the extent to which their color is focal. The
contours in Figure 4b illustrate the relative frequency
of prototype choices across the set of 320 chromatic
Munsell chips; it is plotted the same way as in figure 2
of Regier et al. (2005) and as in the corresponding
graph in figure 3 of Philipona and O’Regan (2006).

The modes of these focal color choices (innermost
contours) coincide with the prototypes of red, yellow,
green, and blue in English (for details see figure 2 in
Regier et al., 2005). They also coarsely coincide with
the unique hues. According to Kuehni, Shamey,
Mathews, and Keene (2010), Munsell chips 5R4/14,
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5Y8/14, 2.5G5/12, and 2.5PB5/12 correspond to unique
red, yellow, green, and blue, respectively (see table 1 in
Kuehni et al., 2010). These Munsell chips are high-
lighted as black circles in Figure 4 and subsequent
contour plots (Figures 6, 7, 10, and 14).

Calculation of singularity

Philipona and O’Regan’s (2006) approach to deter-
mining the singularities of the reflectances consists of
three steps. The MatLab functions section in the
supplementary materials provides the functions we
used to implement these steps in the present study.

Step 1: Reflected and illuminant signals

The first step concerns the relationship between the
illuminant LMS signal and the reflected LMS signal
across different illuminations. A priori, the maps that
link illuminant LMS signals to reflected LMS signals
could be arbitrary, taking illuminant LMS triples into
arbitrary reflected LMS triples. But what Philipona and
O’Regan (2006) observed was the surprising result that
for most surfaces, the maps were very accurately linear.
The linear transformation between the illuminant
signals and reflected signals may be characterized by a 3
3 3 transformation matrix A that converts the
illuminant signals into the reflected signals of a given
surface across all illuminants. The matrix A that does
this with minimum error (maximum variance ex-
plained) can be obtained by linear regression. Philipona
and O’Regan (2006) showed that the residual variation
that is not explained through the linear transformation
is almost zero (no more than around 0.015 of the total
variance) for each of the reflectances (cf. figure 1 in
Philipona & O’Regan, 2006). Hence, reflected signals of
a given surface across a wide range of illuminations
may be approximated with almost perfect accuracy by
a linear transformation of the LMS signal of those
illuminations. The matrix A that accomplishes the
linear transformations is specific to a given surface
reflectance.

Our function ‘‘A_maker’’ computes the linear
regression and provides the transformation matrix A.
This function uses a slightly different least squares
method than the original algorithm of Philipona and
O’Regan (2006). For details, see the MatLab functions
section in the supplementary materials.

Step 2: Sensory singularities

The second step concerns the properties of the
matrix A that defines the linear transformation. The
three cone excitations that make up the illuminant and
reflected LMS signals may be represented in a three-

dimensional space—the cone-excitation space. In gen-
eral, a 3 3 3 matrix will take a point in three-
dimensional space and project it into another point in
three-dimensional space. For a typical matrix A, when
the illuminant varies over the whole cone-excitation
space, the reflected signal will also vary across the
whole cone-excitation space (cf. Figure 2).

However, sometimes a matrix projects the three-
dimensional illuminant signal into a two-dimensional
or one-dimensional subspace of three-dimensional
cone-excitation space. Such matrices are called singular
matrices. With surfaces corresponding to matrices A
that are singular, the reflected signal will be restricted to
a plane or a line within the three-dimensional cone-
excitation space (cf. Figure 3). The degree to which this
happens is measured by the eigenvalues of the matrix A,
as obtained by eigenvalue decomposition of the matrix
A. When an eigenvalue is close to zero, there is an axis
along which the variation of the reflected signal will be
very small. Illuminant signals transformed by matrices
with one near-zero eigenvalue are projected into
reflected signals restricted to a plane in cone-excitation
space. When two eigenvalues are close to zero, there are
two axes along which the variation of the reflected
signal is small. Illuminant signals transformed by
matrices with two near-zero eigenvalues are projected
into reflected signals almost restricted to a line in cone-
excitation space.

Our function ‘‘ev_calculator’’ calculates the eigenval-
ues of the transformation matrix A for each reflectance
(see the MatLab functions section in the supplementary
materials). The algorithm of this function is equivalent
to the one of Philipona and O’Regan (2006).

Step 3: Singularity index

The third step consists of the calculation of a
singularity index. In order to compare singularities of
the matrices corresponding to different surfaces, an
index was needed to assess the singularity of a
transformation matrix A with a single number.

When one or two eigenvalues are zero, the trans-
formation is unambiguously two- or one-dimensional,
respectively. The major challenge consists of evaluating
when an eigenvalue can be judged as being close to
zero.

To solve this problem, Philipona and O’Regan
(2006) proposed the following method. They ordered
the three eigenvalues by their size (similar to what is
done in a principal component analysis), with the last
eigenvalue being closest to zero. If this last eigenvalue is
negligibly small compared with the other two values,
the ratio between the second largest eigenvalue and this
last eigenvalue will be large and the transformation
through matrix A will be approximately two-dimen-
sional. However, if two values are close to zero, then
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the ratio between the first and the second eigenvalue
will be large and the transformation through matrix A
will be approximately one-dimensional.

Philipona and O’Regan (2006) decided not to make a
difference between cases when the reflected signal was
restricted to a one- or two-dimensional subspace of
cone-excitation space (e.g., between the first and second
columns in Figure 3). Instead, they focused on whether
the reflected signal could occupy a three-dimensional
region. For this reason, they defined a singularity index
as the maximum of the two eigenvalue ratios. This
singularity index gives an indication of the degree to
which the matrix compresses incoming illuminant
signals into either a two-dimensional or a one-
dimensional subspace of three-dimensional cone-exci-
tation space. The higher this singularity index, the less
three-dimensional is the space occupied by the illumi-
nant signal in cone-excitation space.

Our function ‘‘si_calculator’’ determines the singu-
larity index based on the eigenvalues of the transfor-
mation matrices (see the MatLab functions section in
the supplementary materials). The algorithm of this
function is equivalent to the one of Philipona and
O’Regan (2006).

Analyses

The singularity index allows the comparison of
singularities across the reflectances. The singularity
indices for the Munsell chips as calculated with our
functions are illustrated by Figure 4c. For comparison,
those calculated by Philipona and O’Regan (2006) and
through the approach of Vazquez-Corral et al. (2012)
are provided in Supplementary Figure S4b and c.

Philipona and O’Regan (2006) found a relationship
between singularity on the one hand and focal colors
and unique hues on the other. Through visual
inspection they observed that the pattern of singular-
ities across Munsell chips (our Figure 4c) looked
similar to the pattern of focal color choices across those
Munsell chips (Figure 4b). In particular, high singu-
larity indices coincided with Munsell chips that were
chosen most often as typical colors in the World Color
Survey; that corresponded to the most typical red,
yellow, green, and blue in English; and that corre-
sponded to the unique hues (black circles in Figure 4).
Figure 4b also illustrates potential differences between
the exact location of the peaks of focal color choices
and unique hues. However, in any case, focal colors
and unique hues are sufficiently similar to both be
related to the peaks of the singularity index in Figure
4c.

In order to quantify the relationship between
singularities and focality, we calculated the correlation
between the relative frequencies of focal color choices
and the singularities across the 320 Munsell chips.
Figure 5a illustrates the relationship between singular-
ities (Figure 4c) and focality (Figure 4b) for the natural
illuminants, human photoreceptors, and maximally
saturated Munsell chips when using our algorithms and
data. (For comparison, corresponding figures for the
original results of Philipona and O’Regan, 2006, and
for the compact singularity index of Vazquez-Corral et
al., 2012, are provided in Supplementary Figure S5.)
The correlation between singularities and focal color
choices explained 41% of the total variance (r¼ 0.64, p
, 0.0001). This correlation quantifies the similarity
between the patterns of focality and singularities in
panels b and c of Figure 4.

Figure 4. Munsell chips used by Philipona and O’Regan (2006). Graphics show Munsell chips arranged by their hue (x-axis) and

lightness (y-axis), which are defined as Munsell hue and Munsell value, respectively, in the Munsell Color System (Munsell Color

Services, 2007). Black circles highlight the Munsell chips that Kuehni et al. (2010) identified as unique red, yellow, green, and blue

(from left to right). In panel a, contours refer to Munsell chroma; in panel b, they refer to the relative frequencies of prototype

choices (i.e., focality) in the World Color Survey (figure 2 in Regier et al., 2005); and in panel c, they refer to the singularity indices.

Red contours correspond to high values, green correspond to medium values, and blue correspond to low values. Note that the local

peaks (innermost contours) are at similar locations in all three graphs and that they are close to the unique hues (black circles).
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Main tests

In the present study, we investigated whether the
relationship between singularities, focal colors, and
unique hues depends on the characteristics of the
natural illuminants, the human photoreceptors, and the
reflectances of the Munsell chips. For this purpose, we
analyzed (a) how changes to the illumination, the
sensors, and the reflectances affect the singularity
pattern and (b) how the resulting singularities relate to
focal color choices and unique hues.

First, to evaluate the changes in the pattern of
singularities, we compared singularities for new illu-
minants, sensors, or reflectances with the singularities
in Figure 4c that resulted from Philipona and
O’Regan’s (2006) illuminants, sensors, and reflectances.
We calculated correlations across Munsell chips
between the singularity indices in Figure 4c and the
respective singularity indices obtained with other
illuminants, sensors, or reflectances in order to quantify
and statistically evaluate the similarity between pat-
terns of those two sets of singularities.

Second, we tested whether the relationship between
singularities and focal colors holds despite changes to
the illuminants, sensors, or reflectances. For this
purpose we calculated the correlations across Munsell
chips between singularity indices and focality. This is
the same kind of correlation as described and
illustrated in Figure 5a for the results of Philipona and
O’Regan (2006), but here they were calculated for
singularities based on illuminants, sensors, and reflec-
tances that differed from those of the previous studies.
Finally, unique hues were compared with the peaks of
singularities. They also serve as points of reference
across graphics with different singularity patterns.

Criteria

The main criterion for both kinds of correlations was
whether those correlations were significant. Due to the
large sample size (N¼ 320 Munsell chips), the t test for
the correlations had a high statistical sensitivity (or
power). As a result, any correlation �0.11 (i.e.,
explaining .1% of the variance) became significant in
these tests. Moreover, when accepting a beta (or Type
II) error of 0.05 in the absence of a significant
correlation in those tests, possible correlations that the
tests missed may amount to only r¼ 0.19, explaining
3.4% of the variance. Hence, in the case of nonsignif-
icant results, we consider that changing the illuminants,
the sensors, or the reflectances destroyed the pattern of
singularities originally observed with daylight illumi-
nants, cone sensitivities, and maximally saturated
Munsell chips.

However, in order to further qualify the impact of
changing illuminants, sensors, and reflectances on the
pattern of singularities, we also examined whether the

variance explained by the resulting correlation coeffi-
cients differed significantly from a 50% criterion that
was defined as follows. For the first kind of correlations
between two sets of singularity indices, the 50%
criterion simply corresponds to correlation coefficients
of r ¼ 0.71, which explain 50% of variance. For the
second kind of correlations between singularities and
focal colors, the reference for the 50% criterion was the
original correlation in Figure 5a, which explained 41%
of the variance. For this reason, the 50% criterion
corresponds to a correlation coefficient of r¼ 0.45,
which explains half of the 41%—namely, 20.4% of the
variance. If a correlation explained significantly more
variance than that defined by the 50% criterion, the
pattern of singularities was considered to be similar to
the one originally obtained and the relationship to focal
colors was considered to be high. If a correlation was
significantly below the 50% criterion, the respective
change of illuminants, sensors, or reflectances is
reported to have a strong effect on the pattern of
singularities or the relationship between singularities
and focal colors.

For correlations between singularities and focal
colors, we also inspected whether they were signifi-
cantly lower than the ones obtained with daylight
illuminants, cone sensitivities, and maximally saturated
Munsell chips. (This did not make sense for the
correlations between singularities because almost all
correlations below 1 are significantly different from 1.)

These criteria are illustrated through the red bands in
Figures 8, 11, and 15. The first bar in these figures
illustrates the correlation obtained with daylight
illuminants, cone sensitivities, and maximally saturated
Munsell chips, and the red bands show 0.95 confidence
intervals around 50% and 100% of the variance. All the
statistical comparisons between correlations were done
through z tests using Fisher’s z transformations (Fisher,
1921).

Illumination

Examples of the natural illuminants used by
Philipona and O’Regan (2006) and Vazquez-Corral et
al. (2011) are shown in Figure 6a. Such natural
illuminant spectra can be accurately represented using
three basis functions (Das & Sastri, 1965; Dixon, 1978;
Judd et al., 1964; Romero et al., 1997; Sastri & Das,
1966, 1968; for a review see Maloney, 1999). For this
reason, the first three principal components of the
natural illuminants used here almost completely (98%)
explain the variance of the spectra (Figure 6e).

Philipona and O’Regan (2006) demonstrated that it
is analytically true that the transformation between
illuminant and reflected signal can be modeled by a 33
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3 matrix when the illuminant spectra can be represented
by three basis functions. We reproduce the mathemat-
ical proof in the Mathematical proof for three basis
functions section of the supplementary materials.
Consequently, the linear approximation of the trans-
formation between illuminant and reflected signals is
highly accurate in the case of natural illuminants. This
is illustrated by Figure 6i, which shows the high
similarity of the reflected LMS signal and its linear
approximation when using the natural illuminants of
Philipona and O’Regan (2006). Small differences
between illuminant and reflected signals are due to the
fact that empirical illuminants are only approximated
and not completely represented by three basis function.

The first question is whether the approximation
through that linear transformation is also accurate
when using artificial illuminants that may not be
decomposed into three basis functions. The second
question is whether the distribution of singularities
reproduced with the artificial illuminants is the same as
that obtained with the natural illuminants. The third
question is whether the singularities obtained with the
artificial illuminants are related to focal colors and
unique hues.

Method

As one set of artificial illuminants, we used 12
standard illuminants (F1–F12), which simulate fluo-
rescent lights. The spectra are displayed in Figure 6b.
Like the natural illuminants, these fluorescent illumi-
nants may be represented by three principal compo-
nents that explain 99% of the variance (Figure 6f).
However, the spectra of the fluorescent illuminants in
Figure 6b are fundamentally different from those of the

natural illuminants in Figure 6a. In particular, they
have several pronounced peaks in their spectral power
distributions, and they have rather narrow-band
spectra compared with natural illuminants. Hence,
these fluorescent spectra allowed for testing whether the
pattern of singularities found with natural spectra
holds for indoor illumination with spectra that strongly
differ from natural ones.

As a second set of artificial illuminants, we used 300
random-spline illuminants that were produced as
follows. For each random spectrum, 10 data points (x¼
wavelength, y¼ relative intensity) were randomly
created within the visible spectrum (i.e., between 400
and 700 nm). A random value along the y-axis
(intensity) was determined at the beginning and end of
the spectrum. A smooth curve was interpolated
through cubic splines. The values at the beginning and
end of the spectrum prevented intensities from sys-
tematically increasing at the beginning and end of the
spectrum because cubic functions increased to positive
or negative infinity. Figure 6c shows 12 sample random
spline spectra.

Figure 6g shows the first three principal components
of these random-spline illuminants. They represent
only 54% of the variance (of random-spline illumi-
nants). Fifteen principal components are necessary to
represent 98% of the variance of random-spline
illuminants. Hence, in contrast to natural and fluores-
cent illuminants, random-spline illuminants may not be
represented by only three linear basis functions. In this
way, this set of random illuminants allowed for testing
whether results depend on whether illuminants may be
decomposed into three basis functions. Moreover, these
random-spline illuminants include a large range of
different spectra. They include both very narrow-band
(‘‘peaky’’) and broad-band spectra (cf. Figure 6c). In

Figure 5. Correlations across Munsell chips. Each colored disk corresponds to one of the Munsell chips in the graphs of Figure 4. Axes

with the label ‘‘Focal colors’’ refer to the number of prototype choices in the World Color Survey (Regier et al., 2005), as shown in

Figure 4b. Panels a through c illustrate the correlation between singularity index and focal colors (data in Figure 4b, c), between

Munsell chroma and singularity index (data in Figure 4a, c), and between Munsell chroma and focal colors (data in Figure 4a, b),

respectively. Correlation coefficients are given in the upper left corner of each panel; ***p , 0.0001. The correlation in panel a

quantifies the results of Philipona and O’Regan (2006) as explained in the General method section; the correlations in panels b and c

are discussed in the Surfaces section.
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this way, this sample of illuminants allows for testing
more generally whether the pattern of singularities
found with natural illuminants may be reproduced for
a large range of possible illuminants.

Finally, a third set of artificial illuminants consisted
of monochromatic lights (Figure 6d shows examples).
Each of these illuminants consists of a Gaussian
function centered at a different integer wavelength and
with a standard deviation of 0.3 nm. The set consisted
of illuminants for all integer wavelengths between 400
and 700 nm, resulting in overall 301 illuminants. These
illuminants are extremely peaky and narrow band.
Furthermore, they cannot be represented using three
principal components (here such components would
capture only 3% of the variance; cf. Figure 6h).

To examine the effect of sampling illuminations from
only parts of the visual spectrum, we also analyzed four
‘‘sparse samples’’ of of monochromatic illuminants (cf.
Figure 7). Sparse samples consisted of sets of only 13
monochromatic illuminants. One of the four sets
consisted of Gaussians sampled evenly every 25 nm
across the whole visible spectrum (Figure 7a). A second
set was sampled in the short-wavelength (or ‘‘left’’)
region of the spectrum at integer wavelengths between
420 and 432 nm (Figure 7b). The third set covered the
medium-wavelength (or ‘‘center’’) region at integer
wavelengths between 543 and 555 nm (Figure 7c), and
the last set consisted of long-wavelength (or ‘‘right’’)
samples at 668 to 680 nm (Figure 7d). For computa-
tional reasons, these Gaussians had a standard
deviation of 15 nm.

The sets of monochromatic illuminations were used
to test specifically whether the pattern of singularities
found with natural spectra holds for narrow-band,
peaky illuminant spectra and to explore under which
conditions the pattern breaks down.

For the sensors and the reflectances, Stockman-
Sharpe cone fundamentals and maximally saturated
Munsell chips were used, as explained in the General
method section.

Results

Linear approximation of reflected LMS signal

The third row of Figure 6 (panels i through l)
illustrates the similarity between the actual reflected
LMS signal and its linear approximation through the
transformation matrix A. Note that for illustration
purposes the reflected signal is shown for a sample
reflectance (the red Munsell chip 5R4/14 of Figure 3a)
and the sample illuminants shown in the first row of
Figure 6. For all sets of illuminations considered here,
the matrices A calculated for all Munsell chips
extremely accurately accounted for the transformation
from illuminant to reflected LMS signal (cf.
Supplementary Table S1). The average variance ex-

plained by the linear approximation with transforma-
tion matrix A was R2¼ 99.2% for fluorescent, R2 ¼
98.9% random-spline, and 95.7% for monochromatic
illuminants. This was almost as high as for natural
illuminants (R2¼ 99.9%). For sparse sets, the variance
explained by the linear approximation was 100%. These
results indicate that the reflected signal can be
approximated with high accuracy for fluorescent,
random-spline, and monochromatic illuminants.

For fluorescent illuminants, this result may be
explained by the fact that they can be represented
through three linear basis functions (cf. Figure 6f), as
was the case for the natural illuminants (Figure 6e).
However, random-spline and monochromatic illumi-
nants cannot be represented by three linear basis
functions (Figure 6g, h). Hence, the fact that we can
find an adequate linear approximation defined by the
transformation matrix A is not limited to illuminants
that can be represented by three linear basis functions.

Still further analyses showed that the high accuracy
of the approximation for random illuminants is also
not limited to the sensitivities of the cones and to the
Munsell reflectances used here. When using random-
spline illuminants instead of natural illuminants with
the artificial sensors and the artificial reflectances
introduced in the two sections below, the linear
approximation also explained between 97.7% and 100%
and between 97.3% and 99.6% of the variance of the
reflected signal depending on the type of sensors and
the type of reflectances, respectively. Hence, the linear
approximation seems to be very accurate for a large
range of illuminants, sensors, and reflectances.

Moreover, the transformation matrices obtained
with the different kinds of illuminants were very similar
to one another. Further analyses showed that the
transformation matrices of one class of illuminants
could be used to approximate with high accuracy the
reflected signal of Munsell chips under another class of
illuminants. The transformation matrices obtained with
any of the four kinds of illuminations approximated the
reflected signal of the other illuminants on average
between 88.4% and 99.7% of the variance, respectively
(cf. Supplementary Table S1).

Singularity patterns

The contour plots in the last row of Figure 6
illustrate the singularity index for the Munsell chips
calculated with the natural illuminants (panel m), the
fluorescent illuminants (panel n), the random-spline
illuminants (panel o), and the monochromatic illumi-
nants (panel p). As with natural illuminants (panel m),
the local peaks of the singularity index contours for the
fluorescent (panel n), random-spline (panel o), and
monochromatic (panel p) illuminants were close to
unique red, yellow, and green (black circles), and
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Figure 6. Illuminants. The four columns in this figure correspond to the four kinds of illuminants: natural (first column), fluorescent

(second), random spline (third), and monochromatic (last column). The x- and y-axes in the first (panels a through d) and second

(panels e through h) rows correspond to wavelength (in nm) and relative spectral power, respectively. Panel a illustrates examples of

daylight illuminants, with red, green, and blue curves corresponding to five examples from the Grenada database (Romero et al.,

1997), the Maryland forest illuminants (Chiao et al., 2000), and the simulated daylight spectra (Judd et al., 1964), respectively. Panel b

shows the 12 illuminants F, where the red curves correspond to the semibroadbent illuminants F1 through F6, the green curves

correspond to the broadbent illuminants F7 through F9, and the blue curves correspond to the narrow triband illuminants F10

through F12. Panels c and d illustrate 12 examples of random-spline and monochromatic spectra, respectively. The three curves in the

graphs of the second row (panels e through h) show the first three principal components of the illuminants (red¼ first component,

blue¼ third component). The principal components were calculated for the complete set of each kind of illuminants (i.e., not only for

the few examples shown in the first row). The R2 in the top right corner indicates how much of the variance of the spectra the first

three principal components explain. The third row (panels i through l) illustrates the differences between the reflected LMS signal

when calculated with the exact formula (black circles) and when approximated based on the respective matrix A (red dots). The

format in this row is the same as that in Figure 1a. As an example, the reflectance of Figure 3a was used, and the reflected signal for

the sample illuminants in the first row of this figure (panels a through d, respectively) are shown here. The R2 in the top right corner

indicates how much of the variance of the reflected signal for this reflectance and the respective set of illuminants is explained by the

approximation (the average across all reflectances is given in the text). The last row (panels m through p) illustrates the singularity

�
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unique blue was located within contours of relatively
high singularity indices.

This was also the case for the evenly sampled sparse
set of monochromatic illuminants (Figure 7e). For the
center-sampled set, this was the case for red, yellow,
and blue but not for green (Figure 7g). However, for
left- and right-sampled sets, unique hues did not
coincide with peaks of singularities (Figure 7f, h).

Figure 8 illustrates the common variance of the
different singularity patterns and the singularity
patterns calculated with the natural illuminants (panel
a) and with the pattern of focal color choices (panel b).
Supplementary Table S2 provides the corresponding
statistical details.

The singularity indices for natural illuminants were
highly correlated with those of fluorescent (r ¼ 0.95, p
, 0.001), random-spline (r¼ 0.91, p , 0.001), and
monochromatic (r¼ 0.92, p , 0.001) illuminants and
the evenly sampled sparse set (r ¼ 0.93, p , 0.001).
These correlations explained significantly more than
50% of common variance (all p , 0.001). They imply
that those artificial illuminants produced singularities
that were highly similar to those of natural illuminants.
As a result, the singularities calculated for the
transformations under fluorescent, random-spline,
monochromatic, and evenly sampled sparse illuminants
also explained 40% (r¼ 0.64), 32% (r¼ 0.57), 34% (r¼
0.58), and 34% (r¼ 0.59) of the variance of focality,
respectively (all p , 0.001). These correlations do not
significantly differ from those based on the natural
illuminants and are significantly higher than 20.4% of
explained variance, as defined by the 50% criterion.
According to these results, the relationship between
singularities, focal colors, and unique hues occurs with
all those sets of illuminants.

In contrast, the pattern of singularities was signifi-
cantly altered when illuminants were exclusively
sampled from small parts of the visible spectrum, as
was the case for the left-, center-, and right-sampled
sparse sets of illuminants. Although, the singularities of
the center-sampled illuminants still yielded significant
correlations with the singularities of the natural
illuminants (r¼ 0.60, p , 0.001) and with focality (r¼
0.35, p , 0.001), the correlation with the singularities of
the natural illuminants explained less than 50% of the
variance (37%; z¼�2.3, p¼ 0.02), and the correlation

 
indices across Munsell chips for the different types of illuminants. The format of the panels in this row is the same as that in Figure 4c.

For comparison, panel m shows again the singularity indices for the natural illuminants as in Figure 4c. Panels n through p show those

for the fluorescent, random-spline, and monochromatic illuminants, respectively. Although the spectra differ strongly across the four

sets of illuminants (first row), and although random-spline and monochromatic spectra cannot be represented by three principal

components (second row), the linear approximation is extremely accurate for all four types of illuminants (third row), and the

patterns of singularities are very similar between these sets of illuminants (fourth row).

Figure 7. Sparse samples of monochromatic illuminants. Each

sample of illuminants consists of 13 Gaussian functions sampled

from different regions of the visible spectrum. Those in panel a

are sampled evenly at equal wavelength distances across the

whole range of the visible spectrum. Those in panels b, c, and d

are sampled from the short- (left), medium- (center), and long-

(right) wavelength part of the visible spectrum. The panels on

the right side (panels e through h) illustrate the corresponding

singularity indices. The format is the same as that of the first

and last rows of Figure 6. Note that the pattern of singularities

changes only when illuminants are not distributed across the

whole range of the visible spectrum (panels b through d).
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with focality was significantly lower than the one
obtained with natural illuminants (12%; z¼�5.0, p ,
0.001). These results indicate that the pattern of
singularities and its relationship to focal colors are less
reliable when illuminants are sampled only from the

medium-wavelength part of the visible spectrum.
However, a weak relationship to focal colors persists.

For the left- and right-sampled sparse sets of
illuminants, singularities were positively correlated with
neither the singularities of the natural illuminants (r¼
�0.11, p , 0.04 and r¼ 0.02, p¼ 0.74, respectively) nor
focality (r¼�0.01, p¼ 0.85 and r¼�0.09, p ¼ 0.11,
respectively). All these correlations were significantly
below the 50% criterion (all p , 0.001). These results
show that the pattern of singularities is strongly
affected when illuminants are sampled from only one or
the other end of the visible spectrum. In this case, the
relationship between singularities, focal colors, and
unique hues breaks down completely.

Discussion

We observed that the linear approximation of the
reflected LMS signal is extremely accurate for all sets of
illuminants examined here. Natural, fluorescent, ran-
dom-spline, and monochromatic illuminants resulted in
highly similar transformation matrices. For this reason,
it is not surprising that all these sets of illuminants also
produced highly similar patterns of singularities across
Munsell chips.

The observation that fluorescent, random-spline,
and monochromatic illuminations produced transfor-
mation matrices and singularity patterns that were
similar to the ones found with natural illuminants
shows that the transformation of the illuminant into
the reflected LMS signal is stable across a wide range of
illuminations. On the one hand, the results with
fluorescent and monochromatic illuminants (Figure 6b,
d) highlight that the pattern of singularities also occurs
for peaky, narrow-band illuminants. On the other
hand, the results with random-spline and monochro-
matic illuminants (Figure 6c, d) demonstrate that the
pattern of singularities holds for a large range of
different illuminants that cannot be represented by
three basis functions.

Moreover, the 12 fluorescent and the 13 evenly
sampled sparse illuminants produced highly similar
patterns of singularity compared with the 300 natural,
random-spline, and monochromatic illuminants. This
finding demonstrates that the pattern of singularities
and its relationship to focal colors does not depend on
a large sample of illuminants but may also be produced
with a sample as small as 12 illuminants.

We conducted further analyses to examine the role of
the shape and the bandwidth of the illuminants. Results
are provided in the Supplementary illuminants section
of the supplementary materials. Supplementary Figure
S6 provides results for spectra with different numbers
of random peaks and with shapes that are either
smooth or zigzag. Supplementary Figure S7 explores

Figure 8. Explained variance across illuminants. The x-axis in

both panels corresponds to a type of illuminant, where nat¼
natural, fluor¼ fluorescent, rand¼ random-spline, and mono¼
monochromatic. The rightmost bars correspond to the sparse

samples of illuminants, where even¼evenly sampled across the

whole visual spectrum, left¼ left- or short-wavelength sampled,

cntr ¼ center- or medium-wavelength sampled, and right ¼
right- or long-wavelength sampled. The y-axis corresponds to

the variance explained by the respective correlation in

percentages. Panel a illustrates correlations between the

singularity indices calculated with the natural illuminants used

in the original studies and those calculated with the illuminants

used here. Panel b represents the correlations between the

singularity indices and focality (Figure 4b). Error bars show 95%

confidence intervals. The first bar (nat) refers to the original

settings. The red diamonds refer to 100% and 50% of the

respective first bar, and the red bands illustrate the corre-

sponding confidence intervals (based on Fisher transforms).

They serve as points of reference for judging the size of the

other bars. Note that the first five bars are significantly higher

than the 50% criterion (lower red diamond) in both panels,

indicating that the singularities based on artificial illuminants

produced results similar to those based on natural illuminants;

sampling from only a limited region of the visual spectrum

strongly changed the results (last three bars).
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the role of the bandwidth (i.e., standard deviations) and
the shape (i.e., Gaussian, step, or triangular) of
monochromatic illuminants. However, none of these
properties of illuminants affected the pattern of
singularities.

According to our results, the only aspect of the
illuminants that strongly affects the pattern of singu-
larities and its relationship to focal colors and unique
hues is the range of the visible spectrum from which
illuminants are sampled. In particular, when illumi-
nants are sampled exclusively from one or the other end
of the visible spectrum, the pattern of singularities is
strongly altered and the relationship to focal colors
breaks down. Taken together, these results suggest that
the pattern of singularities across colors does not
depend strongly on the type of illumination as long as
illuminants are sampled across the whole range of the
visible spectrum.

Sensors

The sensitivities of the human photoreceptors, the
cones, may be mathematically represented by color-
matching functions for arbitrary, virtual sensors (e.g.,
RGB), tristimulus values (XYZ), and cone fundamen-
tals (LMS). The singularity index is invariant as to this
kind of representation and as to the relative scaling of
the sensitivities. This is illustrated by Supplementary
Figure S8 in the Different measurements of cone
sensitivities section of the supplementary materials. For
this reason, here we concentrate on the results with the
cone sensitivities of Stockman and Sharpe (2000).

Koenderink (2010) argued that the characteristics of
the cone sensitivities may be at the source of
invariances in the distribution of color signals. Figure
9a shows the sensitivity spectra of the cones according
to Stockman and Sharpe (2000). The sensitivity spectra
of the cones have a particular shape that is almost, but
not exactly, Gaussian. They are asymmetrically ar-
ranged across the visible spectrum. Moreover, the
sensitivity spectra of the M- and L-cones (green and red
curves, respectively, in Figure 9a) strongly overlap,
resulting in high correlations between M- and L-cone
excitations (cf. Figure 1). These particularities of the
human photoreceptors may be at the source of the
irregular distribution of the singularity indices across
colors (Figure 4c). We tested this idea by using a large
range of artificial sensors.

In preliminary investigations, we produced artificial
sensors based on random Gaussian and random-spline
distributions (cf. Witzel et al., 2014). The results
suggested that the distributions of the singularity index
are comparatively stable across different locations of
the sensitivity spectra within the visible spectrum,

different degrees of overlap and correlation between the
sensors, and different shapes of the sensitivity spectra.
What had the largest impact on the pattern of
singularity indices was whether the sensors covered the
whole visible spectrum or only parts of it. Here, we
systematically varied the location, the overlap and
correlation, the shape, the width, and the overall range
of the sensitivity spectra to test these preliminary
findings.

Method

To examine the impact of the location of the
sensitivities along the spectra, we produced inverted
spectra (Figure 9b). Inverted spectra consist of the cone
fundamentals mirrored horizontally along the visible
spectrum (400–700 nm). Consequently, these sensors
have a similar shape as human cones but the inverse
location.

To check whether the correlations between the
spectral sensitivities affect the singularity index, we
produced three equally spaced spectral sensitivities that
did not overlap (Figure 9c) and three that strongly
overlapped (Figure 9d). The former set of sensors
consisted of three normal distributions that were
distanced by 6 SD, with less than 0.3% overlap, and the
overlapping 0.3% was set to zero. For the strongly
overlapping set of sensors the Gaussians were only 1
SD away from each other, which corresponds to 61.7%
overlap, and the overlapping parts were not set to zero.

To examine the impact of the shape of the
excitation spectra, we produced linear (Figure 9e),
sigmoidal (Figure 9f), and two kinds of sinusoidal
sensors (Figure 9g, h). The three linear sensors
increased linearly from the center toward one end and
the other end of the visible spectrum and from the two
ends of the spectrum toward the center, respectively.
The sigmoidal sensors were produced through a
logistic regression based on a binomial distribution so
that the sensors converged toward 0 and 1 at one end
and the other end of the visible spectrum, respectively.
Two of the sensors were at 0.5 in the center of the
visible spectrum (red and blue curves, respectively, in
Figure 9f), and the third was shifted toward shorter
wavelengths (green curve). The first set of sinusoidal
sensors was symmetrical. It was produced by three
sine functions for which one cycle (2*p) was equal to
the visible gamut and that were shifted by 908 (p/2)
away from each other (Figure 9g). The second set of
sinusoidal sensors was asymmetrical because it in-
cluded one sensor (green curve) that was shifted by
only 188 (0.1*p) away from the short-wavelength
sinusoidal sensor.

To assess the impact of the bandwidth of the sensors,
we produced narrow-band (Figure 9i) and broad-band
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(Figure 9j) sensors based on step functions, which are
either on (1 ¼ maximal excitation) or off (0 ¼ minimal
excitation). Narrow-band sensors consisted of three
sensors that were on at 400, 550, and 700 nm,
respectively, and off for the rest of the visible spectrum.
Broad-band sensors were on for 400 to 500, 500 to 600,
and 600 to 700 nm, respectively.

Figure 9. Real and artificial sensors. Panel a shows the cone

fundamentals of Stockman and Sharpe (2000), and panel b

horizontally mirrored (‘‘inverse’’) cone fundamentals. Panels c

through j illustrate the following sensors: (c) nonoverlapping

orthogonal, (d) strongly overlapping Gaussian, (e and f) linear

and sigmoidal, (g and h) sinusoidal, and (i and j) narrow band

and broad band. The sensors in panels k through n have the

same shape as cone fundamentals, but their range of

wavelength sensitivity is squeezed around the center (panel k)

toward the longest (panel l) and toward the shortest

wavelength (panels m and n). The squeezed sensors (panels k

through m) are squeezed by a factor of 2, and the super-

squeezed sensors (panel n) are squeezed by a factor of 4. Note

that spectra differ in location, overlap (correlation), shape,

bandwidth, and the range of the visible spectrum across which

they are distributed.

Figure 10. Singularity indices for different sensors. Panels

correspond to the sensors shown in Figure 9. The format is the

same as that in Figure 4c. Note that the distribution of

singularities is robust across variations in the location, overlap,

shape, and bandwidth of the sensitivity spectra (panels b

through j) and is most strongly affected by reducing

(‘‘squeezing’’) the visible spectrum (panels k through n).
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Finally, we produced four sets of squeezed sensors
that did not range over the whole visible spectrum
(Figure 9k through n). For three of the sets, we reduced
the spectral range of the cone fundamentals to half of
the original range. The first set was located around the
center of the visible spectrum (cf. ‘‘center squeezed’’ in
Figure 9k), the second set was located at the long-
wavelength end (cf. ‘‘right squeezed’’ in Figure 9l), and
the third set was located at the short-wavelength end of
the visible spectrum (cf. ‘‘left squeezed’’ in Figure 9m).
The fourth set consisted of super left-squeezed sensors.
The range of these sensors was reduced to one fourth of
the original range, and the sensors were located at the
short-wavelength end of the spectrum (Figure 9n).

To test the impact of the sensors on the singularity
index, the same natural illuminations and Munsell
chips used in Philipona and O’Regan (2006) were used
as illuminants and reflectances. However, singularity
patterns and their relationship to focal colors could be
affected by a combined effect of changes to the sensors
and changes to the illuminants. In order to examine
such interaction effects, we also inspected singularity
patterns for the different sensors under fluorescent (cf.
Figure 6b), random-spline (cf. Figure 6c), and mono-
chromatic (cf. Figure 6d) illuminants.

Results

Effects of sensors under natural illuminants

Figure 10b through n shows the distribution of the
singularity index when using artificial sensors. Apart
from the super-squeezed sensors (Figure 10n), unique
yellow (second black circle from left) was close to peaks
in singularity indices for all sensors. For unique red
(leftmost black circle), this was the case for all but the
two left-squeezed sensors (Figure 10m, n). In most
cases, unique green (third circle from left) and blue
(fourth circle from left) were also close to peaks of
singularity indices. However, unique green did not
coincide with peaks of singularities for inverted (Figure
10b), center-squeezed (Figure 10k), and super-squeezed
(Figure 10n) sensors. Unique blue was not located close
to the peaks for the narrow-band (Figure 10i), right-
squeezed (Figure 10l), and left-squeezed (Figure 10m)
sensors.

Figure 11 illustrates the variance explained by the
correlations between the singularity indices for the
different sensors and those for the cone fundamentals
(Figure 11a) and between singularity indices and focal
color choices (Figure 11b). Dark bars correspond to the
left panels of Figure 10, and light bars correspond to
the right panels. Supplementary Table S3 provides the
corresponding statistical details.

Apart from the super-squeezed sensors, the singu-
larity indices for all sensors were positively and highly
significantly correlated with those for the human cones

(all p , 0.0001) and were highly significantly correlated
to focality (maximum p¼ 0.005). Based on the criteria
for comparing correlations, three main groups of
sensors may be distinguished.

The first group consists of sensors that produced
highly similar singularity indices as cone fundamentals
(cf. Figure 10a). This group included orthogonal,
nonoverlapping (Figures 9c and 10c), overlapping
(Figures 9d and 10d), linear (Figures 9e and 10e),
sigmoidal (Figures 9f and 10f), sinusoidal (Figures 9g, h
and 10g, h), and broad- and narrow-band (Figures 9i, j
and 10i, j) sensors. The correlations between the
singularities of these sensors and those obtained with
cone sensitivities shared significantly more than 50% of
the variance, with correlation coefficients varying
between r¼ 0.84 and r¼ 0.96 (cf. Figure 11a). Among
those sensors, orthogonal, linear, sigmoid, and broad-
band sensors yielded correlations with focality that
explained significantly more (all p , 0.05; cf.
Supplementary Table S3) than 50% of the variance
explained through the correlations based on cone
sensitivities (cf. Figure 11b).

The second group consisted of sensors whose pattern
of singularities strongly differed from the one obtained
with cone sensitivities. This group included right-
squeezed (Figure 9l and Figure 10l), left-squeezed
(Figures 9m and 10m), and super left-squeezed (Figures
9n and 10n) sensors. The correlations between the
singularities of these sensors and those of the cones
explained significantly less than 50% of the variance,
with correlation coefficients varying between r¼�0.26
and r¼ 0.25 (Figure 11a). Their correlations with
focality were significantly below the 50% criterion (all p
, 0.001; cf. Figure 11b).

Finally, results for the two remaining sensors—the
inverted and the center-squeezed sensors—showed
weak effects on the pattern of singularities and their
relationship to focal colors (Figure 9b, k and Figure
10b, k). The correlations of the singularities with those
for the cone sensitivities (r¼0.76 and 0.73, respectively)
did not explain significantly more than 50% of the
variance (cf. Figure 11a), and at the same time the
correlations with focality were significantly smaller
than those obtained with the cone sensitivities (cf.
Figure 11b). Nevertheless, both kinds of correlations
were not significantly below the 50% criterion (cf.
Figure 11a, b).

Taken together, only squeezed and inverted sensors
affected the pattern of singularities and their relation-
ship to focal colors considerably. These results high-
light that the range of the sensitivity spectrum and the
location of the sensors play a considerable role for the
pattern of singularities. This observation is in line with
those found with random-normal and random-spline
spectra in the preliminary study (Witzel et al., 2014).
We provide supplementary results with those random
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sensors in the Random sensors section (Supplementary
Figures S9 and S10 and Supplementary Table S4) of
the supplementary materials.

Effects of sensors under artificial illuminants

The Interaction effects between sensors and illumi-
nants section of the supplementary materials provides
detailed results on the effects of varying sensors under
fluorescent, random-spline, and monochromatic illu-
minants (Supplementary Figure S11 and
Supplementary Tables S5 and S6). In sum, results
obtained with fluorescent, random-spline, and mono-
chromatic illuminants were similar to those obtained
above with natural illuminants. For all types of
illuminants, singularities for all sensors were signifi-
cantly positively correlated with the singularities
obtained with the cone sensitivities under natural
illuminants and with focality (all p . 0.05). The only
exceptions were again the super left-squeezed sensors.
Moreover, under random-spline and monochromatic
illuminants, the correlation with focality was only
marginally significant (p , 0.1) for the left-squeezed
sensors.

With respect to the size of these correlations,
random-spline and monochromatic illuminants yielded
correlations that were similar to those of natural
illuminants (cf. Supplementary Figure S11c through f).
In contrast, fluorescent lights had a stronger effect on
the singularity pattern for some of the sensors (cf.
Supplementary Figure S11a, b). In particular, the
singularity pattern produced with sine-wave and center-
squeezed sensors yielded correlations below the 50%
criterion. This was due to the fact that under
fluorescent illuminants the peak of singularities around
focal and unique yellow, red, and green was strongly
reduced.

The correlations above indicate that differences
between the illuminants have stronger effects on
singularities for some sensors than for others. To
further clarify this interaction between sensors and
illuminants, we inspected the effect of illuminants on
singularities for each kind of sensor separately. For this
purpose, for each sensor we calculated correlations
between singularities obtained under natural illumi-
nants and those obtained under fluorescent, random-
spline, and monochromatic illuminants. These corre-
lations are provided in Supplementary Table S7. All of
these correlations were significant. Random-spline and
monochromatic illuminants produced very similar
patterns of singularities compared with natural illumi-
nants for all sensors, with a minimum correlation of r¼
0.90 (82%) for sigmoid sensors. In contrast, correla-
tions varied much more across sensors when using
fluorescent illuminants, for which lowest correlations
were only r¼ 0.73 (54%) for the two sinusoidal sensors
and r¼ 0.79 (63%) for the super left-squeezed sensors.
Singularities of narrow-band sensors did not change
across illuminants at all (all r ¼ 1). These correlations
suggest that, when considering artificial sensors,
fluorescent illuminants had a stronger effect on
singularity patterns and that these effects were different
for different sensors.

In sum, the effects of sensors and illuminants
combine in the case of certain sensors and fluorescent
illuminants. However, for random-spline and mono-
chromatic illuminants, the effects of sensors remained
largely the same as under natural illuminants.

Discussion

Singularities were surprisingly stable across different
sensors. Apart from squeezing and inverting the
sensors, changes to the characteristics of the sensors did
not fundamentally change the pattern of the singular-
ities and their relationship to focal colors and unique
hues.

For certain sensors, changing illuminants from
natural to fluorescent affected the singularity pattern.

Figure 11. Explained variance across sensors. Apart from the x-

axis, the format is the same as that in Figure 8. The x-axis

corresponds to the different kinds of sensors. Most sensors

resulted in correlations above the 50% criterion; only the

squeezed sensors produced correlations below the 50%

criterion.
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Because fluorescent illuminants are more narrow band
and peaky, the small set of these illuminants selectively
samples only parts of the reflectance spectrum when
being reflected off a surface. In this case, the LMS
signal depends more strongly on which parts of the
spectrum are sampled by the different kinds of sensors.
Consequently, some of the sensors may miss charac-
teristics in the variation of the LMS signal under
fluorescent illuminants that they would have captured
under natural and random-spline illuminants. Howev-
er, even in this case the relationship between singular-
ities and focal colors persists across the different
sensors as long as their sensitivities are not strongly
squeezed.

The present results allow the evaluation of the
impact of the symmetrical arrangement of sensitivities
across the visible spectrum, their shape, their degree of
overlap, their bandwidth, their location within the
visible spectrum, and the range of the visible spectrum
across which sensitivity spectra are distributed. First, in
contrast to human cones, Gaussian (Figure 9c, d),
linear (Figure 9e), the first set of sinusoidal (Figure 9g),
and the step (Figure 9i, j) functions were symmetrical to
the center of the visible spectrum (550 nm). Neverthe-
less, they produced similar singularity indices compared
with the human cones. Consequently, the asymmetry of
the human sensitivity spectra is not at the source of the
irregular distribution of singularity indices across
Munsell chips and their relationship to focal colors and
unique hues.

Second, linear (Figure 9e), sigmoidal (Figure 9f),
sinusoidal (Figure 9g, h), and step (Figure 9i, j)
functions strongly differed from the sensitivity spectra
of human photoreceptors in their shape. Nevertheless,
they yielded highly similar singularity indices, which
coincided with focal colors and unique hues. These
results show that the shape of the sensitivity functions
does not play a major role in the distribution of
singularities and their relationship to focal colors and
unique hues.

Third, singularity indices barely changed when using
orthogonal sensors instead of cones. This observation
shows that the correlation of L- and M-cones (red and
green curves, respectively, in Figure 9c) does not
determine the distribution of singularities and their
relationship to focal colors. At the same time,
overlapping Gaussian (Figure 9d), linear (Figure 9e),
sigmoidal (Figure 9f), and sinusoidal (Figure 9g, h)
sensors strongly overlapped. Nevertheless, these sen-
sors yielded similar singularities compared with the
human cones. These results show that the overlaps
among spectral sensitivities, and the resulting correla-
tions among the color signals, are largely irrelevant for
the distribution of the singularity index across colors
and their relationship to focal colors and unique hues.

Fourth, narrow-step (Figure 9i), orthogonal (Figure
9c), broad-step (Figure 9j), and overlapping (Figure 9d)
sensors have increasing degrees of bandwidth. How-
ever, the fact that they yielded similar singularities
compared with the human cones indicates that the
bandwidth is not a major factor either.

Fifth, the inverted spectra (Figure 9b) had a similar
shape compared with the human cones but differed
mainly by their location along the spectrum. This shift
in location affected singularities, but only moderately.
Other unsqueezed spectra, such as the orthogonal and
sigmoidal sensors (Figure 9c, f), were also located at
different points along the spectrum compared with the
human cones. The fact that they yielded extremely
similar singularities (95% and 96%, respectively) as the
cones indicates that it is not location alone that shapes
the pattern of singularities.

Finally, squeezing the range of sensitivities reduced
(simply squeezed) and even inverted (super squeezed)
the correlation of the corresponding singularity indices
compared with that of the cones (Figure 9k through n).
Strongly squeezing the spectra also destroys the
relationship between singularities and focal colors and
unique hues, as shown by the super-squeezed sensors
(Figures 9n and 10n). However, the comparison
between left-, center-, and right-squeezed sensors
revealed that the squeezing effect was also modulated
by the location of the sensors along the visible
spectrum.

In sum, these observations suggest that the main
characteristic of the sensors that matters for the
relationship between singularities, focal colors, and
unique hues is whether their spectra are distributed
over the whole visible spectrum. This effect is
modulated by the location of the sensors along the
visible spectrum. However, as long as the range of
sensitivities of the sensors extends to both ends of the
visible spectrum, major characteristics of the sensors,
such as the amount of overlap and the shape of the
sensitivity functions, do not disrupt the relationship
between singularities on the one hand and focal colors
and unique hues on the other. This conclusion is
further supported by our previous results with random-
normal and random-spline sensors (Witzel et al., 2014).

Surfaces

There are two critical questions concerning the
characteristics of the maximally saturated Munsell
chips used by Philipona and O’Regan (2006) to
establish a relationship with focal colors. First, these
Munsell chips had different Munsell chroma because
the Munsell system does not provide the same range of
Munsell chroma for all levels of hue and lightness. As
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shown by Figure 5b, the singularity index correlates
more strongly with Munsell chroma (r¼ 0.70, 49%, p ,
0.001) than with focal color choices (r¼0.64, p , 0.001;
see also Supplementary Figure S5b, d). At the same
time, it has been observed that focal color choices also
coincide with some of the most saturated Munsell chips
(Collier, 1973; Munsell, 1912; Regier et al., 2007; Witzel
& Franklin, 2014). As shown by Figure 5c, focal color
choices correlate with Munsell chroma (r¼ 0.41, 17%, p
, 0.001). With respect to those correlations, the
question arises of whether the pattern of singularities
across Munsell hue and value depends on differences in
Munsell chroma and whether the relationship between
singularity index and focal colors is due to these
differences in Munsell chroma. To some extent this
question may be answered by calculating the partial
correlation between singularities and focal color
choices, controlling for Munsell chroma. This partial
correlation (r ¼ 0.54, 29%, p , 0.001) supports a
relationship between singularities and focal colors
independent of Munsell chroma. Consequently, singu-
larities should be correlated with focal colors even
when Munsell chroma is constant. To test this idea, we
examined Munsell chips that are more uniform in
Munsell chroma.

Second, Munsell chips are made of particular
artificial pigments (Munsell, 1912). For this reason,
they may have particular reflectance properties that are
different from those of other surfaces. For example,
reflectances of the sample of Munsell chips used here
can be linearly decomposed into three basis functions,
as illustrated by Supplementary Figure S12a and b (see
also Cohen, 1964; Maloney, 1986; Romney & Indow,
2003; but see Parkkinen et al., 1989). The question
arises of whether the pattern of singularities that is
related to focal colors and unique hues depends on the
particular spectral composition of Munsell chip reflec-
tances or whether surfaces that look the same or at least
highly similar under the most common illuminations
produce similar singularities as Munsell chips. For
example, does a surface with the same red as the
perfectly red Munsell chip but with a different
reflectance spectrum also have a particularly high
singularity? To investigate this question we examined
surfaces that produce the same LMS signal as the
Munsell chips when they reflect white light. When two
lights produce exactly the same LMS signal, they are
called metameric.

However, due to metameric mismatching, surfaces
that are metameric under a particular neutral illumi-
nation will not be metameric under different illumina-
tions (Logvinenko, Funt, & Godau, 2014; Wyszecki &
Stiles, 1982). Hence, sets of metameric reflectances vary
depending on the illuminant under which they are
metameric matches. At the same time, these surfaces
still look similar under a wide range of neutral

illuminations. For example, red surfaces that are
metameric under daylight would still look red under a
tungsten bulb (whether this is due to color constancy or
insensitivity to small changes is not of importance
here). If high singularity is a general property of
reddishness, all red surfaces should have this property
independent of the effects of metameric mismatching.
Consequently, patterns of singularities should be stable
across variations of reflectances that result from
metameric mismatching under neutral illuminations.
To assess potential effects of these variations, we used
two kinds of light—equal-energy light and daylight—to
produce artificial surfaces that are metameric with
Munsell chips under that light.

Method

To make Munsell chips more uniform in chroma, we
had to reduce the Munsell chroma of chips whose
maximal chroma was high in order to match the
Munsell chroma of the other chips. However, some
dark and light Munsell chips (Munsell value ¼ 2 or 9)
are available only with a Munsell chroma of 2, and at
this level of chroma most colors tend to be called gray
or white (cf. figure 8 in Olkkonen, Witzel, Hansen, &
Gegenfurtner, 2010). It would be meaningless to
compare such desaturated colors with focal color
choices. For this reason, we could not use Munsell
chips with equal Munsell chroma across hue and
lightness. Hence, we simply replaced all Munsell chips
with a Munsell chroma above 6 in the set of maximally
saturated Munsell chips with chips with a Munsell
chroma equal to 6. Because those particularly light or
dark Munsell chips are not available at this Munsell
chroma, even our set of Munsell chips with uniform
Munsell chroma still involved differences in Munsell
chroma across Munsell chips. For the sake of
simplicity, we call these chips ‘‘uniformly saturated’’ for
now and come back to this issue when discussing the
results. Figure 13b illustrates the reflectance spectra of
the uniformly saturated Munsell chips that correspond
in hue and lightness to the maximally saturated ones in
Figure 13a. Note that some spectra are the same in
panels a and b because there is no Munsell chroma
larger than 6 for those Munsell hues and values.

To obtain sets of reflectances that are metameric
with the Munsell chips under neutral illuminations, we
determined surface reflectances that produce metameric
LMS signals when reflecting equal-energy white or
daylight (cf. Figure 12a). For this purpose, we
calculated the spectra reflected off the surfaces of the
Munsell chips under equal-energy light (CIE standard
illuminant E) and simulated daylight (CIE standard
illuminant D65).
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We used two approaches to produce surfaces for
which the reflected light is metameric with the reflected
light of the Munsell chips. First, in the RGB approach,
we decomposed the scattered light into linear basis
functions that corresponded to the spectra of the RGB
primaries of a typical cathode ray tube monitor. The
monitor was an Iiyama MA203DT (Iiyama Deutsch-
land GmbH, Ilm, Germany) driven by an NVIDIA
graphics card (NVIDIA Corporation, Santa Clara,
CA), and the spectra of the monitor primaries were
measured with a Photo Research PR650 spectrometer
(Photo Research Incorporated, Chatsworth, CA). The
resulting spectra are shown in Figure 12b. Second, we
calculated the fundamental metamers for the spectra of
the light reflected off the Munsell chips (Cohen &
Kappauf, 1982). A fundamental metamer is the part of
the impinging spectrum that is common to all
metameric impinging spectra. In both cases we
determined the reflectances that would reflect these
lights under those illuminants (Burns, Cohen, &
Kuznetsov, 1989; Wyszecki, 1958). Note that for
illuminant E the profiles of the impinging spectra are
the same as those of the reflectances. These two
approaches provided us with two sets of artificial
surface reflectances for each set of Munsell chips
(maximally and uniformly saturated) and each illumi-
nant (E and D65).

Figure 13c through f illustrates the artificial reflec-
tances that are metameric under illuminant E with
those in panels a and b. The second row (panels c and
d) shows the reflectances produced through the spectra
of the RGB primaries, and the third row shows those
based on the fundamental metamers under illuminant
E. Reflectances that reflect metameric lights under
illuminant D65 look similar to those produced through
metamers under illuminant E. For this reason, exam-
ples of reflectances that are metameric under illuminant
D65 are provided in Supplementary Figure S13 rather
than in the main article.

Some of the artificial reflectances were partly below 0
or above 1 (Figure 13c through f). Physical reflectance
spectra of real surfaces are necessarily positive and not
larger than 1 (apart from photoluminescent surfaces).
Zero means that they absorb all light, and 1 means that
they completely reflect all light. We tried several
techniques for creating artificial reflectances. If reflec-
tances were limited to the range between 0 and 1, the
LMS signal of maximally saturated Munsell chips
could be produced only by reflectances that were highly
similar to those of Munsell chips. However, if
reflectances are very similar to Munsell chips, they do
not allow the testing of the impact of spectral
characteristics on the singularity index. For this reason,
we used the artificial reflectances based on RGB and
fundamental metamers to investigate this question
from a theoretical perspective. We come back to this
issue in the General discussion.

As before, the set of natural illuminants and the
human cone fundamentals were used to calculate LMS
signals and singularity indices. We also examined
whether changing reflectances and changing illuminants
and sensors together produced interaction effects on
singularities that could not be predicted by the separate
effects of reflectances, sensors, and illuminants.

Results

Figure 14 and Supplementary Figure S14 illustrate
the distribution of singularities across Munsell hue and
value for the different kinds of reflectances. The panels
of these figures correspond to the types of reflectances
in Figure 13 and Supplementary Figure S13, respec-
tively. Analogously to Figures 8 and 11, Figure 15
illustrates the results of the main tests in terms of the
variance explained by the respective correlations.
Figure 15a corresponds to the correlations of the
singularities shown in Figure 14 and Supplementary
Figure S14 with the singularities obtained with the
maximally saturated Munsell chips shown in Figure
14a. Figure 15b illustrates the correlations between
singularities and focal color choices. Supplementary
Table S8 provides the statistical details on these
correlations.

Maximally saturated reflectances

The dark bars in Figure 15 show results with
maximally saturated reflectances. Figure 15a suggests
that the singularity indices are affected by the type of
reflectance. Figure 15b indicates that the strength of the
relationship between singularities and focal colors
increases with the similarity between the singularity
pattern and the one of the maximally saturated Munsell
chips, as shown in Figure 15a.

Figure 12. White illuminants and RGB spectra. Panel a shows

the relative spectral power distribution for illuminants E (dark

gray, dashed curve) and D65 (blue curve). Panel b depicts the

radiances measured for the three phosphors (RGB) of a cathode

ray tube monitor. These RGB spectra were used to create

artificial reflectances that were metameric with Munsell chips

under the illuminants of panel a.
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Singularity indices for RGB reflectances (‘‘RGB-
max’’ and ‘‘RGB-max D65’’) shared more than 87% of
the variance with those for the maximally saturated
Munsell chips (r¼ 0.94 and 0.93, respectively; both p ,
0.001). Consequently, unique hues (black circles in
Figure 14 and Supplementary Figure S14) also
coincided with the peaks of singularities, and singu-
larities were highly correlated with focality (both r¼
0.61, p , 0.001). All these correlations were signifi-
cantly higher than the 50% criterion (p , 0.01). These

results show that maximally saturated reflectances
based on RGB spectra produced singularities that were
highly similar to maximally saturated Munsell chips.

Using fundamental metamers affected the patterns
of singularities more strongly, and it made a difference
whether metamers were produced under illuminant E
(‘‘FM-max’’) or D65 (‘‘FM-max D65’’). Like the
maximally saturated Munsell chips (Figure 14a), the
singularities for the fundamental metamers of the
maximally saturated Munsell chips under illuminant E
showed peaks of singularities close to the unique hues
(Figure 14e). The correlations of these singularity
indices and those of the original chips explained 67% of
the variance (r¼ 0.82, p , 0.001), which is significantly
more than 50% (z¼ 3.5, p , 0.001). At the same time,
the correlation with focality explained only 30% of the
variance (r ¼ 0.55, p , 0.001), which is marginally
different from the 41% found with Munsell chips (z ¼
�1.7, p¼ 0.08).

Figure 14. Singularity index for Munsell chips and artificial

reflectances. Following the arrangement of Figure 13, the

graphics show the singularity indices for the maximally (panel a)

and uniformly (panel b) saturated Munsell chips, for the

reflectances produced with the RGB approach (panels c and d),

and with the fundamental metamer approach (panels e and f)

under illuminant E. Singularity indices for reflectances that are

metameric with Munsell chips under illumininant D65 are

provided in Supplementary Figure S14. Note that uniformly

saturated Munsell chips produced different patterns of

singularities compared with maximally saturated ones (col-

umns) and that singularities also vary across the different kinds

of reflectances (rows).

Figure 13. Reflectance spectra for Munsell chips and artificial

reflectances. The format is the same as that in Figure 2a

through d. Panel a illustrates the spectra of maximally saturated

Munsell chips through the nonsingular examples of Figure 2 and

the singular examples of Figure 3. Panel b shows the spectra of

the uniformly saturated set of Munsell chips that correspond to

those in panel a in terms of hue and lightness. Panels c and e on

the left side show artificial spectra that are metameric under

illuminant E with the maximally saturated Munsell chips in

panel a. Panels d and f on the right side show the artificial

reflectances that are metameric with the uniformly saturated

Munsell chips in panel b. The artificial reflectancs in the second

row (panels c and d) were produced with the RGB approach.

The artificial reflectances in the third row (panels e and f) were

created based on the fundamental metamers. Corresponding

reflectances produced when assuming illuminant D65 are

provided in Supplementary Figure S13. Note the strong

differences between the spectra across the rows. Moreover,

some of the artificial reflectances transgress the interval [0, 1],

indicating that these reflectances may be used for theoretical

explorations only and not for real surfaces (for details see text).
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The singularities for the fundamental metamers
under D65 were still more different from those
obtained with the Munsell chips. They did not show a
peak around unique yellow (Supplementary Figure
S14c). Their correlation with the singularities of the
Munsell chips explained only 40% of the variance (r¼
0.63, p , 0.001), which is marginally significantly below
the 50% criterion (z¼�1.7, p¼ 0.09). The correlation
with focal colors explained only 14% of the variance (r
¼ 0.38, p , 0.001), which is significantly below 41% (z¼
�4.5, p , 0.001) but not significantly below the 20.4%
defined by the 50% criterion (p ¼ 0.27).

Using different kinds of reflectances affected the
pattern of singularities and reduced their relationship
to focal colors and unique hues. However, the
singularity indices are still clearly related to focal colors
and unique hues for all maximally saturated reflec-
tances. Hence, the effect of using different reflectances
was not strong enough to completely undermine the

relationship between singularities, focal colors, and
unique hues.

Uniformly saturated reflectances

For the uniformly saturated reflectances, the peaks
of singularities do not coincide with unique hues (black
circles in Figure 14b, d, and f and Supplementary
Figure S14b, d). The light bars in Figure 15 show the
variance explained with singularities for uniformly
saturated reflectances. These bars were much lower
than the dark ones for maximally saturated reflec-
tances, showing the impact of Munsell chroma on the
pattern of singularity indices.

The singularities of the uniformly saturated Munsell
chips (‘‘MC-uni’’) explained only 34% of the variance
with the singularities of the maximally saturated
Munsell chips (r¼ 0.58, p , 0.001) and only 2% with
focal color choices (r¼ 0.15, p , 0.01). Although these
correlations were still significantly positive, they were
both significantly reduced below the criterion of 50% (z
¼�2.8, p , 0.01) and 20.4% (z¼�4.2, p , 0.001),
respectively.

The singularity indices of the uniformly saturated
RGB reflectances (‘‘RGB-uni’’ and ‘‘RGB-uni D65’’)
shared only 39% and 37% of the variance with those of
maximally saturated Munsell chips, respectively (r¼
0.62 and 0.61, both p , 0.001). These were marginally
significantly (z¼�1.9, p¼ 0.06) and significantly below
50% (z¼�2.3, p , 0.05). Accordingly, the correlations
with focal colors were also below the criterion of 20.4%
(z¼�3.2, p , 0.01 and z¼�3.4, p , 0.001), explaining
only 5% of the variance. However, again these
correlations with focal colors were still significant (r¼
0.23 and 0.21, both p , 0.001).

In contrast, the pattern of singularities for the
fundamental metamers of the uniformly saturated
Munsell chips under illuminant E (Figure 14f) and D65
(Supplementary Figure S14d) had barely anything in
common with that of the maximally saturated Munsell
chips. As a result, in Figure 15 the bars for uniformly
saturated reflectances based on fundamental metamers
(‘‘FC-uni’’ and ‘‘FC-uni D65’’) were close to zero. The
singularities for those reflectances shared only 1% (r¼
0.10, p ¼ 0.07) and 2% (r¼ 0.15, p¼ 0.01) of variance
with the singularities for the maximally saturated
Munsell chips, respectively. While these correlations
were still marginally significantly and significantly
different from zero, they were significantly lower than
50% (z¼�9.8 and �9.2, both p , 0.001). These
differences were so strong that there were no significant
correlations with focal colors (r¼�0.10, p¼ 0.06 and r
¼�0.05, p¼ 0.35), which implies that they were also
lower than 20.4% as defined by the 50% criterion (both
p , 0.001).

Figure 15. Explained variance across reflectances. The x-axis

refers to the different kinds of reflectances. Apart from that, the

format is the same as that in Figures 8 and 11. Note that

singularity indices of reflectances with uniform Munsell chroma

explain less than 20% of the variance of focal color choices.
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These results show that the effect of Munsell chroma
and the effect of using different kinds of reflectances
completely annihilate the relationship between singu-
larities and focal colors.

Munsell chroma versus type of reflectance

The following analyses aimed to disentangle the
effects of Munsell chroma, type of reflectance, and the
illuminant used to create metameric reflectances.
Comparing the left (panels a, c, and e) and right (panels
b, d, and f) columns of Figure 14 and Supplementary
Figure S14 allows for the appreciation of the impact of
differences in Munsell chroma on the pattern of
singularities. The patterns of singularities for the
uniformly saturated reflectances in the right column of
Figure 14 and Supplementary Figure S14 differ from
those for the maximally saturated reflectances in the
respective left columns. To quantify the similarities
between these patterns, we calculated correlations
between the singularity indices on the left and right
sides for each row in Figure 14 and Supplementary
Figure S14. Supplementary Table S9 provides details.
All correlations were significant, showing systematic
similarities between the singularities of maximally and
uniformly saturated variants of each kind of reflectance
(i.e., each row in Figure 14 and Supplementary Figure
S14). Nevertheless, they explained less than 50% of
variance, which indicates a strong effect of Munsell
chroma on the pattern of singularities.

Comparing the rows within each column of Figure
14 and Supplementary Figure S14 allows for assessing
whether the spectral characteristics of the reflectances
play a role in the pattern of singularities even when the
LMS signal produced by these reflectances is the same
under white light. Above, the singularities of the
uniformly saturated reflectances were compared with
those of the maximally saturated Munsell chips in
Figure 14a. Here, we compared them to the singular-
ities of the uniformly saturated Munsell chips in Figure
14b to get an idea of how strongly the different types of
reflectances affect singularities independently of the
effect of Munsell chroma. For this purpose, we
calculated the correlations between singularity indices
for the uniformly saturated Munsell chips in Figure 14b
and those for the uniformly saturated artificial reflec-
tances in the right columns of Figure 14 (panels d and f)
and Supplementary Figure S14 (panels b and d).
Supplementary Table S10 provides detailed results.

Singularities for uniformly saturated RGB reflec-
tances (Figure 14d and Supplementary Figure S14b)
were very similar to those for uniformly saturated
Munsell chips. The correlations explained 84% (r ¼
0.92, p , 0.001) and 81% (r¼ 0.90, p , 0.001) of the
variance. Singularity indices of the reflectances based
on fundamental metamers (Figure 14e and

Supplementary Figure S14d) were more different from
the ones for the uniformly saturated Munsell chips. The
singularity indices of the fundamental metamers under
illuminant E shared only 21% (r ¼ 0.46, p , 0.001) of
the variance with those for the uniformly saturated
Munsell chips, and those under illuminant D65 shared
only 16% (r¼ 0.41, p , 0.001). These latter results
indicate a strong impact of the type of reflectance on
the pattern of singularities when reflectances are
uniformly saturated.

Finally, the comparison between the artificial re-
flectances in Figure 14c through f and Supplementary
Figure S14 allows for the appreciation of the impact of
assuming illuminant E or D65 for the metamers. The
artificial reflectances produced with illuminant E and
illuminant D65 yielded very similar results. As shown
in Supplementary Table S11, the singularity indices of
the corresponding reflectances produced under illumi-
nants E and D65 were highly correlated (minimum r¼
0.81). These results indicate that the difference between
reflectances that were metameric under illuminants E
and D65 was of minor importance for the pattern of
singularities.

Taken together, these results highlight the impor-
tance of Munsell chroma for the pattern of singular-
ities. At the same time, the results for the reflectances
based on fundamental metamers suggest that the
pattern of singularities also varies across surfaces that
are metameric under white light (illuminant E and
illuminant D65). As a result, both Munsell chroma and
the type of reflectances affect the relationship of
singularities to focal colors and unique hues, as
observed in the section above. Combining both effects
completely destroyed this relationship.

Interaction with illuminants and sensors

We also inspected whether combining different
illuminants and sensors with the reflectances results in
interaction effects. Supplementary Figure S15 provides
the explained variances in the format of Figure 15 for
these additional analyses.

First, we examined singularity patterns across
reflectances under random-spline illuminants instead of
natural illuminants. Although there were some slight
differences in the amount of explained variance for
each type of reflectance (cf. Supplementary Figure
S15a, c), overall the results were mainly the same as
with natural illuminants: There was a consistent effect
of Munsell chroma across all reflectances and smaller
modulations due to the different types of reflectances.

In contrast, varying sensors together with reflec-
tances had a much stronger effect on the pattern of
singularities. In particular, changing the sensors had
much stronger effects on singularities when combined
with reflectances other than the maximally saturated
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Munsell chips. This becomes particularly clear when
looking at the results across reflectances for orthogonal
sensors (cf. Figure 9c). Supplementary Figure S15b and
d illustrates the explained variances. As reported above,
these sensors produced a highly similar pattern of
singularities for maximally saturated Munsell chips.
However, the singularity pattern strongly changed
compared with that obtained with human cones for all
other reflectances, including maximally saturated arti-
ficial reflectances and uniformly saturated Munsell
chips (Supplementary Figure S15b). As a consequence,
singularity patterns were only very weakly or not at all
correlated with focality for orthogonal sensors com-
bined with those kinds of reflectances (Supplementary
Figure S15d). These results indicate that, in general,
singularities depend on the interaction of sensors and
reflectances. However, reflectances of maximally satu-
rated Munsell chips have properties that produce
patterns of singularities that are stable across illumi-
nants and sensors.

Discussion

The comparison between maximally and uniformly
saturated reflectances showed that the singularity index
and its relationship to focal colors and unique hues
strongly depend on variations of Munsell chroma. The
results with artificial reflectances indicated that differ-
ences in the spectral characteristics of reflectances that
look the same under white light also play a role in
singularities and their relationship to focal colors and
unique hues.

Munsell chroma

The importance of Munsell chroma for the rela-
tionship between singularities and focal colors seems
very clear since the relationship was much lower for
uniformly saturated reflectances than for maximally
saturated reflectances. The question arises of why
Munsell chroma strongly modulates this relationship.
We discuss this question in three steps.

First, we wonder where the pattern of singularities
for uniformly saturated reflectances comes from. For
maximally saturated Munsell chips, the relationship
between singularities and chroma is clear from Figure
5b. In contrast, uniformly saturated reflectances were
more uniform and lower in Munsell chroma than the
maximally saturated reflectances. If singularities de-
pend on Munsell chroma, singularity indices for
uniformly saturated Munsell chips should be lower and
more uniform than those for maximally saturated
reflectances. Figure 14 and Supplementary Figure S14
do not allow for comparing the sizes of singularities
between maximally and uniformly saturated reflec-

tances because the contours in each panel of those
figures range from the minimum to the maximum
singularity within the respective data set. The left side
of Figure 16 (panels a, c, and e) provides such a

Figure 16. The variation of singularity indices for uniformly

saturated Munsell chips. The left side of the figure (panels a, c,

and e) shows the size of singularity indices for maximally and

uniformly saturated Munsell chips, reflectances based on RGBs,

and fundamental metamers (under illuminant E), respectively.

For these graphics, singularity indices were normalized for

maximally and uniformly saturated reflectances together in

order to compare the size across both kinds of reflectances. The

red and blue curves show the singularity indices for the

maximally and uniformly saturated reflectances, respectively,

sorted in ascending order of the singularity indices. The x-axis

corresponds to the rank of the reflectance within that order,

and the y-axis corresponds to the singularity index of that

reflectance. The right side (panels b, d, and f) shows the

correlation between singularity indices and Munsell chroma for

the uniformly saturated reflectances. The format is the same as

that in Figure 5b. Note that the maximally saturated

reflectances reach much higher singularities and hence cover a

much larger range of singularities compared with the uniformly

saturated ones (left side). Moreover, even for uniformly

saturated Munsell chips, singularities are slightly related to

Munsell chroma (right side).
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comparison between maximally (red curve) and uni-
formly (blue curve) saturated reflectances. The singu-
larity indices for uniformly saturated reflectances do
not reach as high as those for maximally saturated
reflectances, and as a result the range over which
singularities vary is much smaller than for maximally
saturated reflectances. This implies that the contours
shown on the right side of Figure 14 correspond to a
smaller range of variation than those shown on the left
side. Hence the pattern of singularities is much less
pronounced for uniformly saturated Munsell chips
than for maximally saturated Munsell chips.

At the same time, even our set with uniform Munsell
chroma did not result in the same Munsell chroma for
all Munsell chips because Munsell chips at high and
low lightness only reach very low Munsell chroma. The
right side of Figure 16 (panels b, d, and f) illustrates the
correlation between Munsell chroma and singularity
indices for the uniformly saturated reflectances in the
same format as Figure 5b for the maximally saturated
Munsell chips. Despite the reduced variation in
Munsell chroma, there are still correlations between
singularities and Munsell chroma. Hence, some varia-
tion of the singularity indices for uniformly saturated
Munsell chips may be due to variation in Munsell
chroma. This may also partly explain why there are still
some similarities between maximally and uniformly
saturated reflectances, as observed above (cf.
Supplementary Table S9).

Taken together, these additional results further
highlight the role of Munsell chroma in sensory
singularities.

Second, the focal color distributions used in our
study were measured with maximally saturated Munsell
chips. The question arises of whether these measure-
ments of focal colors are appropriate for examining the
relationship with singularities for uniformly saturated
reflectances.

Observers tend to choose more saturated colors as
prototypes of chromatic categories. The reflectances in
the uniformly saturated sets are almost never chosen as
typical colors because their Munsell chroma is too low
for chromatic and too high for achromatic color
categories (e.g., figure 8 in Olkkonen et al., 2010).
Moreover, color categories change depending on
Munsell chroma. For example, the red category is not
defined at low chroma. In contrast, brown and gray
categories become larger with decreasing saturation
(e.g., figure 8 in Olkkonen et al., 2010). Consequently,
the distribution of focality across Munsell hue and
value may be different from the one of maximally
saturated Munsell chips.

For these reasons, the lack of a relationship between
singularities for uniformly saturated reflectances and
the focal colors obtained with maximally saturated
Munsell chips might support rather than contradict the

relationship between singularities and focal colors. The
fact that singularities are lower and more uniform and
show a different pattern for uniform Munsell chroma
might just reflect the fact that these reflectances would
also result in lower levels and different distributions of
focality. It is possible that the distribution of focal
colors would be more similar to the distribution of
singularity indices for uniformly saturated reflectances
if focal colors were measured with a set of uniformly
colored reflectances. It is difficult to test this idea.
Because observers do not choose desaturated colors as
prototypes, a distribution of focality across hue and
lightness may not be directly measured with colors as
desaturated as our uniformly saturated sets.

In contrast to focal colors, unique hues are solely
defined by hue, not saturation. Munsell hues that were
identified as pure red, yellow, green, and blue with
maximally saturated Munsell chips should be similar
for desaturated Munsell chips. The fact that the highest
singularities of uniformly saturated reflectances were
not close to these hues implies that there is really no
relationship between singularities and unique hues for
uniformly saturated reflectances.

We further explored the origin of the relationship
between singularities and focal colors for maximally
saturated Munsell chips. The consistency of color
naming is a way to measure the strength of category
membership across colors (e.g., Olkkonen et al., 2010;
Olkkonen, Hansen, & Gegenfurtner, 2009). Figure 17
illustrates the relationship of focal colors and singu-
larities to category consistency for maximally saturated
Munsell chips as measured for German observers by
Olkkonen et al. (2010). Category consistency is not
correlated to focal color choices in the World Color
Survey (r¼ 0.06, p¼ 0.25; in a partial correlation
controlling for Munsell chroma: r ¼�0.08, p¼ 0.13).
Moreover, categorical consistency is only marginally
significantly correlated to the singularity index (r ¼
0.11, p¼ 0.06; see also Olkkonen et al., 2009), and this
correlation is even negative when controlling for
Munsell chroma in a partial correlation (r¼�0.19, p ,
0.001). The negative correlation might be due to the
fact that there are additional categories between red,
yellow, green, and blue, such as orange or purple. These
categories have peak consistencies where singularities
are low.

In any case, these results show that neither focal
colors nor singularities are directly related to category
membership. As a consequence, it remains unclear
what exactly constitutes the relationship between focal
colors and singularities for maximally saturated colors
apart from Munsell chroma.

Third, the question arises of how Munsell chroma
may modulate the relationship between singularities on
the one hand and focal and unique hues on the other.
What are the characteristics of Munsell chroma that
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affect both singularities and focal colors and unique
hues?

Munsell chroma is supposed to reflect perceived
chroma. However, it is only an approximate control for
perceived chroma across hues. As a result, even if
Munsell chroma were the same across hues, this would
not mean that the actual perceived chroma would be
perfectly equal across hues. Most importantly, per-
ceived chroma does not have maxima around focal
colors, neither when measured in terms of discriminable
differences from gray (Witzel et al., in prep) nor when
measured in terms of subjective appearance (Witzel &
Franklin, 2014). Hence, the relationship between focal
colors and maximally saturated Munsell chroma is a
particularity of the Munsell system that does not exist
between focal colors and perceived chroma.

It is possible that observers across different lan-
guages tend to choose colors with higher chroma as
prototypes of chromatic color categories. In this case, it
is even possible that the cross-cultural regularities in
prototype choices are due to the differences in
perceived chroma across the maximally saturated
Munsell chips (Witzel & Franklin, 2014).

At the same time, a possible explanation for the
relationship between singularities and maximally satu-
rated Munsell chips might be that those Munsell chips
reach particular levels of excitation purity, which is the
radial difference in chromaticity from the white point.
For a given hue, Munsell chroma is also related to
excitation purity. The higher the Munsell chroma for a
given hue, the farther away the chromaticity coordi-
nates are from the white point. When calculating
singularity indices for all Munsell chips, singularity
indices increase with purity (cf. figure 4 of Philipona &
O’Regan, 2006). If both the measurement of focal

colors and the distribution of singularities are artifacts
of the distribution of Munsell chroma, the relationship
between singularities and focal colors could be ex-
plained by the stimulus sampling of Munsell chips.

However, in additional analyses Philipona and
O’Regan (2006) showed that at comparable levels of
purity, singularities had local maxima around unique
hues. This was the case across different levels of
Munsell chroma (‘‘crests’’ in figure 4 of Philipona &
O’Regan, 2006). Hence, the relationship between
singularities and unique hues seems to hold for equal
levels of colorimetric purity but not for equal levels of
Munsell chroma.

The perceived chroma across hues is still more
variable for equal levels of excitation purity than for
equal Munsell chroma. Excitation purity is related to
how close a light spectrum is to monochromatic light.
The fact that the relationship between singularities and
unique hues is much more stable across equal levels of
purity than across equal levels of Munsell chroma
suggests that the relationship between singularities and
unique hues might be due to spectral characteristics
rather than to perceived chroma.

Metameric spectra

Different types of reflectances had a different impact
on the pattern of singularities and their relationship to
focal colors and unique hues. First of all, the high
similarity between the singularities for the two kinds of
metameric matches (under illuminants E and D65) is
not surprising because illuminants E and D65 are very
similar and reflect light in similar ways (cf. Figure 13c
through f and Supplementary Figure S13). Conse-
quently, the reflected LMS signals of these surfaces are

Figure 17. Category consistency. Panel a shows the categorical consistency across Munsell hue and value for maximally saturated

Munsell chips. Contours refer to categorical consistency of German observers as measured by Olkkonen et al. (2010) across different

illuminations. The format is the same as that in Figure 4. Panel b illustrates the relationship between category consistency and focal

color choices measured in the World Color Survey (cf. Figure 4b). The x-axis corresponds to category consistency in relative

frequencies of same categorizations, and the y-axis corresponds to focal color choices. Panel c shows the relationship between

category consistency and singularities. The x-axis corresponds to category consistency, and the y-axis corresponds to the singularity

index. Apart from that, the format in panels b and c is the same as that in Figure 5. Note that category consistency is correlated

neither with focality nor with singularity.
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very similar under these illuminants, which explains the
similarity of the singularity indices. Taken together, the
findings with these two kinds of metameric matches
indicate that the gist of our results does not depend on
the white illuminant we assume for the metameric
matches.

Despite their different reflectance spectra, RGB-
based reflectances produced similar results compared
with the original Munsell chips. The main difference
between the RGB-based spectra and those of the
Munsell chips is in the two enormous peaks at long
wavelengths in the RGB spectra (cf. Figure 13c, d).
These peaks result from the narrow-band spectrum of
the red primary. It seems that these peaks barely affect
the pattern of singularities and their relationship to
focal colors and unique hues. At the same time, the red
and green primaries roughly coincide with unique and
focal red and green. The blue primary is also close to
unique and focal blue, being just slightly more reddish
(e.g., Witzel et al., in prep). The mixture of the
maximum red and green primaries produces a color
that is close to focal yellow. As a result, RGB primaries
may produce particularly saturated colors around focal
red, yellow, green, and blue. The high saturation
around the colors may explain why the maximally
saturated RGB reflectances produced almost as high
correlations between singularities and focal colors as
the maximally saturated Munsell chips.

At the same time, the results with fundamental
metamers indicated that not all surfaces that look like
the typical or unique red, yellow, green, or blue yield
particularly high singularity indices. In particular, there
exist metameric reflectances that produce the same
LMS signal as the Munsell chips under white light
(illuminant E or illuminant D65) but result in different
patterns of singularities.

Some of the artificial reflectances took values that
cannot occur in physical reflectances of real surfaces
(Figure 13c through f). However, our main findings do
not depend on whether the reflectances are physically
realizable. Most importantly, the strong similarity of
the singularity patterns between the different kinds of
maximally saturated reflectances occurred despite the
values of some artificial reflectances being outside the
interval between 0 and 1 (cf. Figure 14a, c, and e).

Moreover, additional analyses showed that the
changes in the singularity patterns that occurred when
using more uniform Munsel chroma and when using
different kinds of reflectances also occurred when all
reflectances were in the interval between 0 and 1. In
addition to the artificial reflectances based on RGBs
and fundamental metamers, we produced artificial
reflectances based on nonoverlapping Gaussian, linear,
and step functions, such as those used for the artificial
sensors in Figure 9c, e, and j. Details on these
additional analyses are provided in the Additional

kinds of reflectances section of the supplementary
materials (Supplementary Figures S16 and S17 and
Supplementary Table S12). In particular, when using
linear and step functions, all uniformly saturated
reflectances were physically realizable (i.e., within the
interval [0, 1]; cf. Supplementary Figure S16d, f).
Nevertheless, these reflectances still produced strongly
different singularities compared with the maximally
saturated Munsell chips (R2¼ 22% and 36%) and were
barely correlated with focal colors (R2¼ 1% and 4%; cf.
Supplementary Table S12). These results confirm the
strong effect of Munsell chroma even when all
reflectances are physically realizable. Furthermore,
these artificial reflectances also produced slightly
different singularity patterns compared with the
uniformly saturated Munsell chips, hence confirming
an effect of the type of reflectance on singularities. As a
consequence, the findings with artificial reflectances
based on RGBs and fundamental metamers are
representative for physically realizable reflectances.

The difficulty of producing physically realizable
reflectances that are metameric with the light reflected
by maximally saturated Munsell chips under white
illuminations indicates that the unequal distribution of
maximal Munsell chroma across hue and lightness is
bound to the reflectance spectra of Munsell chips.
Using a different set of pigments to produce color chips
would result in different reflectance spectra, which
would allow for a different distribution of maximal
chroma across hue and lightness. Given the dependence
of singularities on the distribution of maximal Munsell
chroma, maximally saturated color chips based on
pigments other than those of Munsell chips might also
produce a different pattern of singularities, which
might not be related to focal colors and unique hues.

Finally, we also observed that the stability of the
pattern of singularities across different kinds of sensors
is a particularity of the maximally saturated Munsell
chips. The pattern of singularities for maximally
saturated reflectances other than Munsell chips, and for
all uniformly saturated reflectances, is affected much
more strongly by changes in the sensitivities of the
sensors (cf. the Interaction with illuminants and sensors
section).

Taken together, our findings suggest that there is
something particular about the reflectances of Munsell
chips that produces the strong relationship between
singularities, focal colors, and unique hues. For
example, it might be that pigments are particularly pure
for the Munsell chips that correspond to focal colors
and unique hues. In this case, these chips would have
reflectances with narrower bandwidth and, hence,
higher colorimetric purity. These peaks in colorimetric
purity might be the origin of the observations that
those chips have the highest available chroma in the
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Munsell system and that they have the highest
singularities.

This idea is further supported by the results of
nonnegative matrix factorization. The principal com-
ponents have partly negative spectral power, and hence
the principal components themselves may not physi-
cally exist (e.g., as reflectances of pigments; cf.
Supplementary Figure S12). In contrast, nonnegative
matrix factorization provides nonnegative linear basis
functions that may exist as real reflectances of
pigments. Munsell reflectances can be approximated
using four nonnegative basis functions that strongly
correspond to red, yellow, green, and blue (Buchsbaum
& Bloch, 2002). Hence, the reason why Munsell chips
exist at particularly high Munsell chroma for these hues
might be that these hues correspond to pure component
spectra.

Conclusions

The present study investigated whether characteris-
tics of illuminants, reflectances, or sensors are the main
determinants of the relationship between focal colors,
unique hues, and the singularities in the variation of
LMS signals across changes in illumination. We found
that the relationship between singularities, focal colors,
and unique hues is stable across a wide range of
illuminations and across fundamentally different sen-
sors as long as the illuminants and the sensitivities of
these sensors extend to both ends of the visible
spectrum. In contrast, the characteristics of the
reflectances strongly affected the distribution of singu-
larities across colors and were crucial for the relation-
ship between singularities, focal colors, and unique
hues. Moreover, it turned out that something particular
about the reflectances of maximally saturated Munsell
chips establishes a robust relationship between singu-
larities, focal colors, and unique hues. In fact, when
reflectances other than maximally saturated Munsell
chips are used, singularities are affected by the type of
sensors. The finding that reflectances and Munsell
chroma play a crucial role in the relationship between
singularities, focal colors, and unique hues points to
three major paths for future research on sensory
singularities.

First, the original motivation for investigating
sensory singularities was to show that color language
and color appearance would be related to objects with
which human observers interact under changing
illuminations in their natural visual environment.
However, Munsel chips and the other reflectances
investigated here are not representative samples of
natural reflectances. Hence, the question arises of how
the findings about the relationship between singulari-

ties, focal colors, and unique hues apply to reflectances
in the natural environment. There is evidence for a
positive answer to this question. Natural reflectances
fall into a limited set of mainly three classes (Osorio &
Bossomaier, 1992) and may be represented using three
principal components (Chiao et al., 2000). Moreover,
the principal components of Munsell chips may be used
to reconstruct natural reflectances with high precision
(Jaaskelainen, Parkkinen, & Toyooka, 1990), indicat-
ing a similarity between the reflectances of Munsell
chips and natural surfaces. Finally, some of the results
of Philipona and O’Regan (2006) supported the idea
that singularities have similar peaks for natural
reflectances as for Munsell chips. In an ongoing follow-
up study we provide further evidence for this idea
(Witzel & O’Regan, 2014).

Second, the question arises of which are the precise
characteristics of the reflectance spectra that modulate
sensory singularities. Answers to this question would
allow for clarifying how reflectance properties modu-
late the relationship between sensory singularities,
color language, and color appearance. A possible
analytical approach for determining the characteristics
of singular reflectances could consist of exploring
metameric black space. Previous studies have used this
approach to determine the space of illuminants under
which all surfaces reflect an LMS signal along a line,
implying that this LMS signal is singular (Brainard,
Wandell, & Cowan, 1989; Burns et al., 1989). The role
of illuminants and reflectances in this approach might
be reversed in order to determine the space of
reflectances that are singular under all natural illumi-
nants.

Finally, it is an open question how sensory
singularities are translated into perception. In particu-
lar, it is not clear how sensory singularities relate to
adaptation and color constancy. Moreover, Munsell
chroma is not an accurate perceptual attribute and
might produce spurious effects on the pattern of
singularities. Hence, better ways to control perceptual
attributes must be found to relate samples of surface
colors and sensory singularities to color perception.
For this reason, future research needs to investigate
how sensory singularities are related to perceived
attributes of color, such as perceived chroma, hue, and
lightness; perceived color variegation; and color con-
stancy.

Keywords: color appearance, color categories, color
constancy, color vision, unique hues
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