
Block Neural Network Avoids Catastrophic
Forgetting When Learning Multiple Task

Guglielmo Montone
Laboratoire Psychologie de la Perception

Université Paris Descartes
75006 Paris, France

montone.guglielmo@gmail.com

J.Kevin O’Regan
Laboratoire Psychologie de la Perception

Université Paris Descartes
75006 Paris, France

jkevin.oregan@gmail.com

Alexander V. Terekhov
Laboratoire Psychologie de la Perception

Université Paris Descartes
75006 Paris, France

avterekhov@gmail.com

Abstract

In the present work we propose a Deep Feed Forward network architecture which
can be trained according to a sequential learning paradigm, where tasks of increas-
ing difficulty are learned sequentially, yet avoiding catastrophic forgetting. The
proposed architecture can re-use the features learned on previous tasks in a new
task when the old tasks and the new one are related. The architecture needs fewer
computational resources (neurons and connections) and less data for learning the
new task than a network trained from scratch

1 Introduction

Two recently suggested architectures, the block neural network [4, 6] and the progressive neural
network [5], tested respectively in a supervised learning paradigm and a reinforcement learning
paradigm have shown impressive results in multi-task learning. The block neural network is created
by training several Deep Feed Forward networks (DNNs) on different tasks. The networks are then
connected using new neurons and connections, forming a bigger network that is trained on a new task
by allowing just the new added connections to be updated. Block neural networks and progressive
neural networks have both been shown to benefit from the advantages of transfer learning. Whereas
in the past different forms of pre-training [2, 3] and multi-task learning [1] have also achieved this,
block neural networks and progressive networks do so without suffering from the disadvantage
of catastrophic forgetting of old tasks in the case of pre-training and the necessity of a persistent
reservoir of data for the multi-task learning. In this paper, after quickly revisiting the block network
architecture, we propose a set of binary classification tasks and show that the block architecture learns
more simply (the network needs less computational resources: neurons and connections) and more
quickly (the train set can be much smaller) than a network trained from scratch.

2 Merging DNNs

We defined a set of tasks T1, . . . , TM and trained a DNN N1, . . . , NM (base models) on each task.
After the first training phase, we used some of the trained networks, say N1, . . . , Nm, to build a block
architecture that was then trained on one of the remaining tasks, say Tm+. The block architecture

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

ar
X

iv
:1

71
1.

10
20

4v
1 

 [
cs

.N
E

] 
 2

8 
N

ov
 2

01
7



original original block original block original #1 original #2 block

a b c d

T1 T2 T2 T3

Figure 1: (a) The architecture is built by adding a block of neurons with three hidden layers to one
base model. (b) Adding a block of neurons with two hidden layers to one base model. (c) Adding a
block of neurons with one hidden layer to one base model. (d) Adding a block of neurons to two base
models. The dashed boxes indicate the layers of the two base models and the block of neurons added.
An arrow connecting two boxes indicates that all the neurons in the first box are connected to all the
neurons in the second box.

was formed by adding a set of new neurons (block neurons) to the previously trained networks
N1, . . . , Nm. The block neurons were connected to the base models as follows: the first hidden layer
of the block neurons received the input for the task Tm+1 . The same input was sent to all networks
N1, . . . , Nm . The second hidden layer was fully connected to both the first hidden layer of the block
neurons and the first hidden layer of each network N1, . . . , Nm . This pattern was repeated for all the
layers. This architecture was tested with two variations. In the two variations respectively the first
and the second layer of the block neurons were removed. When training on the task Tm+1 none of
the parameters in the base model networks was allowed to change. Figure 1 provides a representation
of the block neural network.

3 The tasks

We used six binary classification tasks, which the networks were trained on. The tasks all involved
the concepts of line and angle. We wished to show that the networks N1, . . . , Nm, when trained on
such tasks, would develop features that could be reused by the block architecture to solve another
task involving the same concepts. In each task the stimuli were gray scale images, 32× 32 pixels

a b c d e f

Figure 2: Examples of stimuli: (a) ang_crs; (b) ang_crs_ln; (c) ang_ tri ln; (d) blt_srp; (e) blt_srp_ln;
(f) crs ncrs

in size. Each image contained two to four line segments, each at least 13 pixels long (30% of the
image diagonal). The segments were white on a dark random background or black on a light random
background. The 6 tasks were (see examples in figure 2):

ang_crs: requires classifying the images into those containing an angle (between 20◦ and 160◦)
and a pair of crossing line segments (the crossing point must lie between 20% and 80% along each
segment’s length).

ang_crs_ln: the same as ang_crs, but has an additional line segment crossing neither of the other line
segments.

ang_tri_ln: distinguishes between images containing an angle (between 20◦ and 160◦) and a triangle
(with each angle between 20◦ and 160◦ ); each image also contains a line segment crossing neither
angle nor triangle.

blt_srp: requires classifying the images into those having blunt (between 100◦ and 160◦ ) and those
having sharp (between 20◦ and 80◦ ) angles in them.

blt_srp_ln: the same as blt_srp, but has an additional line segment, crossing neither of the line
segments forming the angle.

2



Table 1: Original network results
Condition 200-100-50 (300K params) 60-40-20 (65K params)

ang_crs 5.5(5.4-5.9) 9.4(8.9-9.8)
ang_crs_ln 13.6(12.5-15.2) 18.3(16.7-18.8)
ang_tri_ln 6.1(5.5-6.8) 11.4(10.6-14.0)
blt_srp 2.0(1.8-2.3) 3.7(3.4-4.2)
blt_srp_ln 6.5(6.4-6.9) 12.5(11.6-14.1)
crs_ncrs 2.8(2.3-2.9) 4.5(4.1-5.2)

crs_ncrs: distinguishes between a pair of crossing and a pair of non-crossing lines (the crossing point
must lay between 20% and 80% of each segment length).

4 Results

In this section, we first report the results obtained by training a DNN on each of the previously
described tasks. Then we report the results of training different block neural networks on the same
tasks. The number of possible architectures that can be built by changing the base models, the number
of block neurons and the task on which the block network is trained, is very large, and exploring all
possibilities was not feasible. A more detailed analysis of the configurations tried can be found in
our previous studies [4, 6]. Here we summarize the results obtained with two kinds of block network
architectures that are particularly interesting because they are obtained by adding a very small number
of block neurons. Moreover in this paper we focus on the ability of such architectures to learn using a
much smaller dataset. We will in fact present the performance obtained by several block architectures
when such architectures are trained on a dataset of almost half the size of the dataset used for training
a network from scratch.
The performance of the networks was evaluated by computing the percentage of misclassified samples
on the test dataset. Each architecture was trained five times, randomly initializing its weights. The
mean performance over the five repetitions and the best and worst performance are reported in the
tables.

1 2 3 4 5
0

20

40

60

80

100

number of base models

cas
es 

of 
im

pro
vem

en
t, %

0-50-50

0-0-50

Figure 3: Percentage of block architectures outperforming a network trained from scratch as a
function of the number of base models present in the block architecture

Original Network

Prior to building block architectures, we trained a DNN on each task. The networks used were of
type NN-200-100-50, with 200, 100, and 50 nodes in the first, second, and third layers, respectively.
Networks of this type were used as base models for all of the block networks. The percentages
of misclassified test examples for these networks are shown in table 1 together with the results for
another architecture, namely NN-60-40-30. Such networks had approximately the same number of
parameters (weight of the networks) as some of the block networks, making interesting performance
comparisons possible. The networks were trained on datasets with 350, 000 examples.

Block Architecture

In figure 3 we present the percentage of block networks outperforming a network trained from scratch
as a function of the number of base models present in the block network. Here we focus on two kinds

3



Table 2: Block architecture with four base models. Dataset of 200.000 stimuli
Condition BA-0-50-50 (60K params) BA-0-0-50 (5K params)

ang_crs (ang_tri_ln+crs_ncrs+blt_srp+blt_srp_ln) 5.0(4.8-5.2) 5.8(5.4-6.3)
ang_crs (ang_tri_ln+ang_crs_ln+crs_ncrs+blt_srp_ln) 4.3(4.0-4.5) 4.6(4.0-5.0)
ang_crs (ang_tri_ln+crs_ncrs+blt_srp_ln+ang_crs_ln) 4.3(4.1-4.8) 4.7(4.3-5.5)
ang_crs_ln (ang_tri_ln+crs_ncrs+blt_srp_ln+ang_crs) 10.7(10.4-11.3) 12.0(11.5-12.4)
ang_crs_ln (ang_tri_ln+crs_ncrs+blt_srp+blt_srp_ln) 12.4(12.0-12.6) 15.1(14.6-15.5)
blt_srp (ang_crs+ang_tri_ln+crs_ncrs+blt_srp_ln) 1.2(1.1-1.4) 1.4(1.3-1.5)
blt_srp (ang_crs_ln+ang_tri_ln+crs_ncrs+ang_crs) 1.8(1.7-2.0) 2.1(1.7-2.4)
blt_srp_ln (ang_crs_ln+ang_tri_ln+crs_ncrs+ang_crs) 6.4(6.3-6.6) 9.7(9.2-10.6)
blt_srp_ln (ang_crs_+ang_tri_ln+crs_ncrs+ang_crs_ln) 6.5(6.3-6.8) 9.8(9.4-10.3)

of block architecture, namely BA-0-50-50 and BA-0-0-50. The architecture BA-0-50-50 (BA-0-0-50)
is obtained by connecting the base models to a DNN with 0(0) units in the first hidden layer, 50(0)
units in the second hidden layer, and 50 units in the third hidden layer. The plots in figure 3 were
obtained as follow. We built several instantiations of the two kinds of block architectures by using
randomly selected base models. Each architecture was then trained on each of the tasks if the task
was not used to train any of its base models. For example a block network built using the base
model trained on blt_srp and ang_crs was trained on all the other tasks excepts those two. The
performance obtained by each block network was compared with the performance obtained with a
network (NN-200-100-50) trained from scratch on the same task. The percentage of times the block
network obtained a better score was evaluated. The plot in the figure clearly shows an increase in the
performance of the block network as the number of base models grows. On the one hand this result
was expected simply because the bigger the number of base models, the more parameters are trained;
on the other hand it is important to stress that the number of parameters trained on the block network
is in any case much smaller than that of a network trained from scratch. The architecture BA-0-50-50
with five base models, for example, has about 60K parameters compared to the 300K of the network
200-100-50. In table 2 and table 3 we show the performance of the block network when the network

Table 3: Block network with five base models. Dataset of 200.000 examples
Condition BA-0-50-50 (75K params) BA-0-0-50 (25K params)

ang_crs (all model used except ang_crs) 4.3(4.0-4.7) 4.4(3.9-4.7)
ang_crs_ln (all model used except ang_crs_ln) 10.6(10.4-10.8) 11.7(11.2-12.1)
blt_srp (all model used except blt_srp) 1.2(0.9-1.9) 1.4(1.1-1.8)
blt_srp_ln (all model used except blt_srp_ln) 5.6(5.2-5.9) 7.2(6.8-8.0)
crs_ncrs (all model used except crs_ncrs) 1.2(1.0-1.3) 1.2(1.0-1.3)
ang_tri_ln (all model used except ang_tri_ln) 5.8(5.7-6.0) 8.6(8.3-9.0)

is trained on a dataset of 200, 000 examples, almost half of the size of the dataset used to train the
network NN-200-100-50. The percentages of misclassified test examples for block architectures with
four and five base models are presented in the tables. The architectures that performed better than (or
equal to) the network NN-200-100-50, which was trained from scratch, are shown in bold. In these
tables, the tasks on which the block architectures were trained are listed together with the tasks on
which the base models were trained (in parentheses).

5 Conclusions

The block architecture proves to be a very effective solution for approaching the problem of multi-task
learning in DNN. The architecture can be a first step toward the construction of DNN architectures
which, in an unsupervised fashion, are able to profit from training on prior tasks when learning a new
task.

Acknowledgments

This work was funded by the ERC proof of concept grant number 692765 "FeelSpeech"

4



References

[1] Rich Caruana. Multitask learning. In Learning to learn, pages 95–133. Springer, 1998.
[2] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and

Samy Bengio. Why does unsupervised pre-training help deep learning? Journal of Machine
Learning Research, 11(Feb):625–660, 2010.

[3] Grégoire Mesnil, Yann Dauphin, Xavier Glorot, Salah Rifai, Yoshua Bengio, Ian J Goodfellow,
Erick Lavoie, Xavier Muller, Guillaume Desjardins, David Warde-Farley, et al. Unsupervised
and transfer learning challenge: a deep learning approach. ICML Unsupervised and Transfer
Learning, 27:97–110, 2012.

[4] Guglielmo Montone, J Kevin O’Regan, and Alexander V Terekhov. The usefulness of past
knowledge when learning a new task in deep neural networks. Cognitive Computation Workshop,
NIPS, 2015.

[5] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[6] Alexander V Terekhov, Guglielmo Montone, and J Kevin O’Regan. Knowledge transfer in deep
block-modular neural networks. In Conference on Biomimetic and Biohybrid Systems, pages
268–279. Springer, 2015.

5


	1 Introduction
	2 Merging DNNs
	3 The tasks
	4 Results
	5 Conclusions

