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Abstract

This paper suggests that in biological organisms, the padstructure of reality,
in particular the notions of body, environment, space, abj@nd attribute, could
be a consequence of an effort on the part of brains to accouttié dependency
between their inputs and their outputs in terms of a smallbrmof parameters.
To validate this idea, a procedure is demonstrated whereblrain of an organ-
ism with arbitrary input and output connectivity can dedtite dimensionality
of the rigid group of the space underlying its input-outpelationship, that is the
dimension of what the organism will call physical space.

1 Introduction

The brain sits inside the cranial cavity monitoring the aaignals that come into
it, and go out of it. From this processing emerge the notidrseti, of outside
space, of objects within that space, and of object attréolike color, luminos-
ity, temperature. Even simple organisms that have littla@cognitive abilities
clearly possess these concepts at least implicitly, sheshow spatially adapted
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behavior like locomotion, navigation, grasping and disénation of different ob-
jects.

How is this possible? What kind of algorithms must be at wosida bio-
logical brains for these notions to be extracted from theaectivity in a mass
of unlabelled nerve fibres? Do brains have this capacity isscahylogeny has
yielded a brain structure which is specially adapted to ustdading the notion of
space?

Here we investigate a more radical hypothesis, namely thgilpiity that what
brains do is to continuously calculate statistics on theural activity in an at-
tempt to characterize itsing a small number of parametei#/e take the extreme
case where the brain has absolutely no a priori informatimutoutside physical
space (whether it exists at all, whether it has a metric, dreit is euclidean,
how many dimensions it possesses). We assume that the difdetggeen motor
commands and the resultant motions of the organism is unkmowhe brain and
totally arbitrary. We further assume that the brain has farmation about what
nerve pathways correspond to sensors sensing internateynekstates.

We show that there is a simple procedure which a brain canouggive at a
distinction between the body, which it can control, and thesiole world, which
it cannot completely control. There is a simple algorithmattleads to a charac-
terization of the number of variables necessary to des¢hberganism’s body
(insofar as the body states affect incoming sensory infooma

Further, and most interesting, we show that the brain canaethe dimen-
sionality of outside physical space, and the number of amdit non-spatial pa-
rameters needed to describe the attributes of objects ibiesntithin it.

Our hypothesis is therefore that what biological organipeixeive as being
the limits of their bodies, as well as the geometry and dinogradity of space
outside them, are deducible, without any a priori knowledigen the laws linking
the brain’s inputs and outputs. The approach we are takirgedefrom the basic
idea that the basis of sensory experience consists in éxigand exercising laws
of sensorimotor dependencies (O’'Regan & Noég, 2001).

2 A simpleorganism

Let us imagine a simple organism consisting of an articdlaen fixed to the
ground. At the end of each of its fingers it has an eye composadamber of
light-sensitive sensors. Imagine in addition that the oigya has proprioceptive
devices that signal the position of the different parts efdhm. The environment,



we shall suppose, consists in a set of lights. The signalaged by the sensors
are transmitted to a brain that controls effectors that ntbgearm.

Figure 1: A simple organism consisting of an articulated anth two “fingers”
and a composite “eye” mounted on each.

Let us suppose that the brain has no a priori knowledge abeubady that
it is connected to, and that this body is the sole connectitias to the outside
world. What comprehension of this “exterior” can the braiaiat and how can it
be obtained?

Certainly the simplest thing the brain can do is to start bingywarious motor
commands, at random. Gradually the brain will notice thaait make a distinc-
tion among the mass of sensory inputs that it receives: Itnatice that certain
inputs, or certain combinations of inputs, always reactsame way to motor
commands, while the other inputs show only partial, unsyate relations to
motor commands. What is the natural conclusion that the sganan deduce
from this fact? It is the fact that its universe can be sepdratto a part which the
organism can completely control, and a part that the orgacen only partially
control.

We shall call the first part, over which it has complete cdntitte organism’s
body, and the second part the organismrs/ironmentWe shall call the first type
of inputs proprioceptiveand the othergxteroceptive We shall say théody is
stationarywhen proprioception is constant, and we shall sayeimgronment is

We follow the terminology used in Kandel, Schwartz, & Jelss2000, and stress the fact
that exteroceptive sensors are not only sensitive to clsaofythe environment but to motion of
the body as well, while proprioceptive are sensitive to gesnof the bodynly (which is more
restrictive that the usual use of this term). Also, it shobénoted that this distinction arises
gradually: certain inputs which might at first seem compjetietermined by motor commands
will later turn out in fact only to be partially determined them.



stationarywhen exteroception is constanNote that since the organism is totally
naive about its environment (and even about the fact thag¢ isesuch a thing at
all as an environment), it has no choice but#dinethese notions.

The brain can now attempt to understand its environment. @sathat occur
in exteroceptive sensors when the body is stationary caakemtto derive from
the environment. We shall assume that the brain attemptsdouat for these
changes, which are defined in the very high dimensional spiattee number of
exteroceptors, in terms of a much smaller number of paraseteor example,
in the case of the articulated arm, there are 40 photorecegdiat their outputs
are completely determined by a much smaller number of paesenamely the
positions of the three lights in the environment. We shdll ttee vector of this
reduced parameter setepresentation of the state of the environment

The brain can also issue motor commands. When it does thizisaoffy
quickly it can assume that most of the resulting changesiexteroceptive input
will be due to its own motion and not to motion of the envirommneAgain a low-
dimensional parameter set can be extracted from the exigtive changes that
occur in this case, and we shall call the resulting vectorpaiesentation of the
exteroceptive body

The representation of the exteroceptive body is richer thamepresentation
of the proprioceptive body in the sense that it provides a feayhe organism
to discover thaelationshipbetween its body and the state of the environment.
Importantly, the organism can note that certain exteroeepghanges caused by
motion in those body parts that bear sensors, cacopgpensatedby particular
environmental changes. For example, in the example of tleukated arm, when
the set of photoreceptors is displaced rigidly by an arm emptthere is a cor-
responding inverse rigid displacement of the environmidigats which can be
made, which will cause exteroception to return to its oagjvalue. Note how-
ever that such compensations aiessibilitiesthat need never actually occur for
our algorithm to work — it is unlikely that the environment wad ever actually
move in this particular rigid fashion. Note also that theilmoibf compensability
derives in an intrinsic fashion from the fact that the reggoof a single set of sen-
sors, namely the exteroceptive ones, varies as a functibmatlistinct sources
of variation: body changes and environmental changes. ridagptive sensors,
since they are only sensitive to a single source of variailamely body changes,
do not provide information about this kind of compensailit

2This definition is compatible with sensors sensitive to\dsives of position, since for exam-
ple if both velocity and position are constant, then veloniust be zero.
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The notion of compensability, arising from the confrorgatof two distinct
sources of change within a single set of inputs, has fundtahenplications for
the genesis of the notion of space in an organism:

1. Compensability defines a class of body movements with &pkat struc-
ture: if the body makes such a movement, then the movememgibg the
body back to its original position is also compensable. ¢ iody makes
two successive compensable movements, then the resultbglgnove-
ment is also compensable. In other words, this class of mewrsrhas the
mathematical structure of a group, whose identity elemestationarity.
We shall call an element of this groupcampensable transformatioof
the exteroceptive body. In the same way, we can define theopgrboom-
pensable transformation of the environment and the growpwipensated
transformations of the body-environment system. By thdind®ns, these
three groups are very closely related to each others.

2. Compensability implies that there is something in comm&twben certain
body movements and certain environmental movements. It(hotnot be-
fore) becomes possible to say that body and environmentranerised in a
single entity which we calépace Note that it is through the use of a sen-
sorimotor approach that we have attained the notion of sgheee can be
no notion of compensability when we only make passive oladiems. It is
through actions that arises the idea of an environmenndidtiom the body,
and through actions that is born the idea of a common mediuougjn
which to describe the body and the environment. In a siméam,\Poincaré
pointed out the radical incommensurability between semssioriginating
in different sensory modalities, unified only by common matcts needed
to reach their sources (Poincaré, 1895, 1902).

Certain compensated transformations have an additionatiap structure.
They form a non-trivial subgroup, in the sense that the sgnsansequences of
two successive transformations of that particular kind megend on the order
in which they have been performed. On the other hand, othmpeasated trans-
formations can be applied before or after any other compeddsansformations
(including the previously mentioned ones) without chaggamything from the
sensory point of view. We will call the first transformatiamgid transformations
and the othersttribute transformations Indeed, the first group of transforma-
tions defines space, and the other transformations defimgebaver non-spatial
attributes.



The terminology of “rigid” transformations comes from thect that these
transformations are exactly related to those spatial toamstions of the body-
environment system leaving the sensory inputs fixed. Thuog neetric defined
over representations of space based on the sensory ingytsvitinhave to be
constant over these latter changes.

Since our organism is assumed to be totally ignorant abseif iand its sur-
roundings, it has no choice but tefinerigidity — the same problem was en-
countered for the notion of stationarity. This means thdbifexample, the phys-
ical laws obeyed by light changed according to the positafrte sensors, there
would be a difference with the euclidean notion of rigidiBut physicists them-
selves encounter the same problem in their conception akesgance they must
also assume agventhe notion of a rigid measuring rod.

We have attained the non-trivial conclusion that withouseing its exte-
roceptive body “from the outside”, the brain can deduce thate exist trans-
formations of the body-environment system that its exteption is not sensitive
to. These compensated transformations provide the bramwhat it needs to
ground its understanding of geometry.

It is worthwhile to point out the relation of our approachhwihat of Droulez
& Berthoz, 1991; Blakemore, Frith, & Wolpert, 2001; Blakemoveéolpert, &
Frith, 2002, where it is proposed that the cerebellum attertgsubtract a pre-
diction of the sensory consequence of its movements frona¢heally observed
consequences in order to deduce the changes that must laweeakcin the en-
vironment. The similarity lies in the very general idea oalzing the sensorial
consequences of a movement of the body alone to understarthéimges of the
environment. This is a classical idea today. But it usualligseon a kind of pla-
tonic a priori about the existence of space and assumeshihable of the brain
is to map its sensory inputs to some kind of objective argietyf the world, and
try to understand its sensations in relation to this abstacld. We used terms
such as “representations of the state of the exteroceptishg”’lio describe what
we (or the brain) conceive this world to be, without any relasbip with an a
priori model.

3 Mathematical sketch

In order to make the preceding discussion more precise,ranotder to derive a
simple, neuronally plausible algorithm, we here preseketch of a mathematical



formalization. We illustrate only the essential aspectswfapproach to show in
a few steps how it is possible to deduce the dimension of thafold of rigid
transformations of outside “physical” space. The Appemiovides suggestions
for a more realistic implementation, and a second papershkitw, beyond the
discovery of dimensions, how the group structure of thegiel transformations
can be accessed and used.

We think that the problem we want to answer is precisely tlablem ad-
dressed in differential geometry. Indeed, a usual way @bthicing the aim of
differential geometry is transparently summarized by isgyto considerS as a
manifold means that one is interested in investigatingetmeperties ofS that
are invariant under coordinate transformations” (Amari &jdoka, 1993). If we
think of the sensorimotor system as a highly redundant patenzation system
to move in this manifold and make observations on it, thengtb&ls are strik-
ingly identical. The structure of the world consists in th@soperties that will be
imposed on any sensorimotor system, the rest is an artdfttoe gpecificities of
bodies. It is in this spirit that we use the language of déferal geometry, with
the conviction it can provide insights.

Consider an environment whose set of all stafeis a manifold€ of dimen-
sione. Suppose the set of all observed sensory inpussa manifoldS of dimen-
sion s, and the set of all possible output$ is a manifold M of dimensionm.
Finally, suppose the environment imposes a ‘smooth enofigeaning we will
consider the problem only in a region excluding the singuder of ) relation
between sensory signatsand motor command/:

S =4¢(M, E) (1)

Note that with our definitions we haxvg= (M x &).

Though the mathematics does not require it, to facilitagediscussion below
we shall consider the case where the manifolds involved mtgedded in finite
vector spaces, and tha$, M) is a vector whose coordinates reflect the neural
activities of the sensory and motor neurons at some timdaking this choice
has the consequence that the sensory inputs will have totbamdeed instanta-
neously by the motor output and the environment states.ig thsis inappropriate
for cases where the sensory inputs are determined by thgatiten over time of
motor commands, as is the case when we control the rotatesdspf the wheels
of a robot, for instance. Our example would apply instead tase where the
neural motor activity would be enough to infer muscle eldizggaand thus the
position of the body. However we wish to emphasize that th@ae of instan-
taneous relation between sensory and motor activitiestisi@oessary from the

7



mathematics and is mainly used to make the presentationbalre intuitive.
Furthermore, it will allow us to identify proprioception nyeeasily.

Indeed, because we argue that geometry arises through osaipkty, and
that proprioceptive inputs cannot be compensated by anygehaf the environ-
ment, the first thing we want to do is to distinguish proproes from extero-
ceptive inputs. This can easily be done in the previous mogdbcating inputs
which do not change when a given definite motor order is issmeldnaintained.
From now on we shall be concerned only with exteroceptivetsip

Following the method frequently adopted in motor contrak@son & Schaal,
1995; Vijayakumar & Schaal, 2000; Baraduc, Guigon, & Burnd) 2, although
we arenot using a motor control approadid = ¢(S), but an approacbn the
contrarybased on the observation of sensory consequences of moionaiads)
and the standard mathematical approach for dealing withfolds, we shall fo-
cus on the tangent spa¢ésS'} of S at some pointS, = (Mo, Ey).

This is allowed by the smoothness ©f and it is important to note that this
provides an exact theoretical ground for the considerattmiow, while the ro-
bustness of the local linear approximation we will make iagtice is a different
issue. Our aim was to show that the dimension of the rigid grofuspace is
accessible through sensory inputs, and to demonstratetieeptual framework
needed to access it. The actual implementation we used hatheo purpose
than illustration, and the question of its robustness facpcal robotic applica-
tions has no incidence on our more theoretical point. Thel&nneuronally
plausible (Sejnowski, 1977; Oja, 1982; Sanger, 1989) tomlused to estimate
these dimensions is Principal Component Analysis (PCA), butadher method
of dimension estimation would have been suitable.

This being said, two natural subspaces can be identifi§d$}: the vector
subspacd dS},r—¢ of sensory input variations due to a motor change only, and
the vector subspadelS'} -0 Of sensory input variations due to an environment
change only. Since we have:

oY oY
dsS = 07M|(]\407E0) ~dM + 87E|(MO,E0) ~dE (2)
we can remark that
{dS} = {dS}an=0 + {dS}ag=o (3)

What are the manifolds to which these subspaces are tangeiat?ing from
(M, Ey), we can consider the sensory inputs obtained through iargabf M/
only (Ey-section= ¢(Ey, M)), and sensory inputs obtained through variations of
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E only (M,-section= (&, My)) (see figure 2){dS}qp—o and{dS}4r—o are the
tangent spaces at the poisy of these manifolds, and the fact that their vectorial
sum is the overall tangent space®imeans, by the definition of transversality,
that the two sections are transverse (see for instance bbadb, 1999 for a ba-
sic description of transversality in submanifoldsit.). We will call C(M,, Ey)
their intersection, which is thus a manifold as well.

sensory manifold

non-empty
intersection

M, - section

E, - section

Figure 2: The sensory manifold in the neighborhoodSgf the £, and M-
sections (see text). These two manifolds are transverskthesir intersection
is the manifold of the sensory inputs accessible eitheuginanotion of the exte-
roceptive body or motion of the environment.

When the body is stationary, the dimension{df'};,,—o gives the numbes
of variables necessary for a local description of the emvivent. When the en-
vironment is stationary, the dimension 1S} ,z—o gives the numbep < m of
variables necessary to explain the variations in exteto@epignals due to body
motions, that is to say, the number of variables describliegekteroceptive body.
When M and E both vary,{dS} is not of dimensiorp + ¢ because the vector
spaces generated % andg—g do not necessarily have null intersection. Certain
exteroceptive changes can be obtained equally eitherdidmr fromdM, asitis
the case when we move alodgM,, E,). This reduces the dimensionality @6



compared to the case where it is possible to identify theroafthe change unam-
biguously. When sensory changes frdid andd M mutually compensate for one
another we shall say that there has been a compensatecdesifimi movement of
the body-environment system, and we shall say that the sgoraling infinitesi-
mal movement of the body (or the environment) is compengiuls, implicitly,
the term of compensated movement means a change of bodypmemant, while
compensable movement means a change of either one aloreyintfdicity we
will drop the word “infinitesimal”, but it should be always fein mind since we
will mostly be dealing with the tangent spaces. This is fiestibecause it is a ba-
sic result that the dimension of a tangent space is the dioeon$§the underlying
manifold.

Since the exteroceptive body representation and the emaeat representa-
tion imply parameterizations qfdS} -0 and{dS}4e—o, there is a natural one-
to-one correspondence between the set of compensated motgrand the set
of compensable movements of the body. The basic idea isgivat) a compens-
able movement of the body, only the environment movemeldiyig the opposite
sensory consequence will, when taken together, yield a eosgied movement
of the body-environment systém

We will now search for the relationships between the dimarsiof all the
entities we have defined. We have shown that the dimensidrecfiace of com-
pensated movements is the same as the dimension of the dpammm@ensable
body movements, and this dimension is accessible becaeseitha trivial one-
to-one mapping of this space 10= {dS}an—o0 N {dS}ap—o. INdeed,dSqn—o IS
compensable means:

3 dSap—o such thatlSyy—o+dSyp—0 = 0 < dSan—0 = —dSap—0 < dSip—0 € T
Thus the space of the compensated movements has the dimehgioBut since
dim{dS}anr—o + {dS}ap—0 =
dim{dS}an—o + dim{dS}ip—o — dim{dS}in=0 N {dS}tap=o
we finally have, with the use of equation 3:
d=p+e—1> 4)

3This is enough for our purpose, but (for the extension of wuask) it is important to under-
stand that this can be extended to non-infinitesimal movésrignintegration: given a compens-
able movement of the body (i.e. a curve tangentially comalglesat any time), we can construct
the movement of the environment whose tangent sensory eleitigancel at any time the tangent
sensory change yielded by the compensable movement. Téysnisietrically true for compens-
able movements of the environment.
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whereb = dim{dS} andd = dimT" = dim C(M,, Ey).

We have consequently deduced the dimension of the manifelseaompen-
sated transformations of the world. Note that this is attuabre fundamental
than simply the number of variables needed to describe thiklnthe manifold of
compensable transformations is the operational aspelseattation to the world
that an organism will be most interested in.

In a subsequent, more technical paper (in preparation) weodstrate how
the group structure of the underlying transformations ecaadressed and defined
throughC(M,, Ey). This will provide a way for the naive organism to understand
its body and produce at will particular rigid transformatoof its exteroceptive
body, such as translations or rotations for instance. Theedsion of the rigid
group, and the dimension of space will be found through thdysof these trans-
formations. For now, if we make the additional assumptiat the organism can
choose to perform only spatial movements, then we can sawthhave accessed
the dimension of the rigid group defining the space the osyam embedded in.

A last point must be made concerning the distinction betw®eprioceptive
and exteroceptive sensory inputs. In the preceding mattexhdiscussion we
have assumed we are dealing only with exteroception, artdptioprioception
has been set aside. It might be thought that this is an uns&gestep, since in
equation 4 proprioceptive dimensions surely would canagl gince they would
contribute equally tg andb. However, this is in general false. If we consider
a case where the representation of the exteroceptive btehgatts with the rep-
resentation of the proprioceptive body, then describing ithitersection will, in
a moving environment, require two times the set of variabdemired in a fixed
environment. Indeed, in a moving environment exterocepiod proprioception
will be unlinked.

4 Experiments

4.1 Method

We here present the results of a simulation of the exampleeoatticulated arm
described above. We additionally describe simulationsgviorfurther cases with
interesting modifications of the organism. The details @f tthree experiments
can be found in the Appendix. A summary of the results is priegkin Table 1.

It should be stressed that the same kind of simulation cosildidme for any other
arbitrary kind of device with sensory inputs and motor otgpu
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| Caracteristics | Organism 1] Organism 2| Organism 3|

Dim. of motor commands 40 100 100
Dim. of exteroceptive inputs 40 80 80
Number of eyes 2 4 4
Diaphragms none reflex controlled
Number of lights 3 5 5
Light luminance fixed variable variable
Dim. found for body (p) 12 24 28
Dim. found for environment (e 9 20 20
Dim. found for both (b) 15 38 41

| Deduced dim. of rigid group (d) 6 | 6 | 7 |

Table 1: Summary of the three experiments. Propriocept®s chot play a role
in the calculation and so is not shown in the table. The esiims given here are
obtained from graphs 3.c and 4. In Organism 3 the group of emsgted trans-
formations is different from the orthogonal euclidean grédecause the organism
has control over a non-spatial aspect of its body, nameldigqghragm aperture.

In the first experiment the arm had four joints and two eyed,tha environ-
ment consisted of three lights. Each eye consisted of a csitegoetina” with 20
omnidirectionally, that is to say not directional, senvgtphoto-sensors mounted
rigidly on a small flat surface, attached to the end of a “filgeme for each eye.

Each joint had 4 proprioceptive sensors whose output deggkomlthe position
of the joint, according to a fixed, randomly assigned law. ®hentation of the
eyes provided no proprioception.

The motor command moving the device was a 40-dimensionabreghich
was converted by a fixed random function to the 12 values #tatohined the 3D
spatial coordinates of the surfaces holding the two eyeglaidorientations.

All these particular choices were arbitrary: the purpose marely to simu-
late a complicated sensorimotor relation that was unknaathe brain and had
the property that the number of dimensions of the motor condwand of the
sensory inputs should be high compared to the number of eéegfefreedom of
the physical system.

In the second experiment we considered a more complex dewvibbean arm
having ten joints, bearing four eyes. Each eye had a diaphoagttenuator with
an automatic “pupil-reflex” that reduced light input to itsoch a way that total
illumination for the eye was constant. There were five lighirses in the environ-
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ment, and we now allowed their intensity to vary. The dimenality of the motor
command and sensory input was also increased respectiv&fOt (determining
the 24 degrees of freedom of the four eyes, each having tlestgmal and three
orientational degrees of freedom) and 120 (determined &@@hphotosensors on
each of the four eyes plus 40 proprioceptors).

Again the purpose was to show that the complexity of the senstor cou-
pling was not a theoretical obstacle to our approach, neitkee non-spatial body
changes like the pupil reflex, nor non-spatial changes ietiveonment, like light
intensity.

The third experiment was identical to the second exceptribat we made
what we shall see below is a theoretically very important rincation: the di-
aphragms were now controlled by the organism instead ofjtmtermined auto-
matically by the total illumination.

To do the simulation we went through the four-stage procediscribed in
the previous section.

1. Proprioceptive input was separated from exteroceptipatiby noting that
proprioceptive input remains silent when no motor commaarésgiven,
whereas exteroceptive input changes because of envirdaholiange.

2. We estimated the number of parameters needed to dedueilvariation in
the exteroceptive inputs whemly the environmerghanges. The algorithm
issues no motor commands, and simply calculates the cocarimatrix of
the observed environment-induced variations in sensq@utié The dimen-
sion estimation is done by considering the eigenvaluesisfdbvariance
matrix. The eigenvalues; should fall into two classes, a class with values
all equal to zero, and a class with non-zero values. We sesuhtie two
classes by a clustering method (see Appendix). The numbeomizero
eigenvalues was taken as the number of dimensions.

3. We estimated the number of parameters needed to deshabetiation
in the exteroceptive inputs whemly the bodymoved. The environment
is kept fixed and the algorithm gives random motor commanes £p-
pendix). We observe the covariance matrix of the resulthranges and es-
timate the dimension from the number of non-zero eigengalu¢he same
way as before.

4. We estimate the number of parameters needed to descelEh#imges in
exteroceptive inputs whewmoth the body and the environmesitange. The
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environment is changed at random, and the organism givel®namotor
commands. The number of non-zero eigenvalues of the covariaatrix
is obtained as before.

4.2 Resultsfor Organism 1

We see that despite the high dimensionality of the outphésekteroceptive, and
the proprioceptive inputs (40, 40, 20, respectively), traarbis able to:

1. distinguish the 20 proprioceptive and 40 exterocep®veser inputs (Figure
3.a).

2. determine that only 12 parameters are necessary to egpriesexterocep-
tive body — this corresponds to the 3 position and 3 oriemadimensions
for each of the two eyes (Figures 3.b and 3.c).

3. determine that 9 parameters are necessary to descrileentienment —
corresponding to 3 spatial dimensions for each of the 3di¢Rigures 3.b
and 3.c).

These results would seem to lead to the conclusion that #ia bhould ob-
servel2 + 9 = 21 degrees of freedom in the exteroceptive inputs when it lets
body and environment move simultaneously, but instead d&lgre found (3.b
and 3.c). The brain thus concludes that there is a group opeasated move-
ments of dimensio21 — 15 = 6, that we know to be the Lie group of orthogonal
transformations (3 translation and 3 rotatidns)

4.3 Resultsfor Organisms2 and 3

In the second experiment, the algorithm deduced that 24as were needed
to characterize the exteroceptive body, 20 were neededhforetivironment,
and 38 were needed to characterize the exteroceptive inghegs both envi-
ronment and body moved simultaneously (see Appendix). Thapgof com-
pensated movements constituted by the brain thereforeimechaoherent with

4 An elementary presentation of Lie groups can be found in 8ufl©85. The orthogonal
transformations are clearly a subset of the set of competisabvements, and the equality of
dimensions guarantees equality of the groups.The idea¢habry information should be invariant
under the Lie group of orthogonal transformations is a Ussficept in artificial vision (Van Gool,
Moons, Pauwels, & Oosterlinck, 1995) and image analysi® @Ruderman, 1999).
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Figure 3: a) Changes in the different inputs when no motor cands are given
and the environment changes. The first 40 sensors depence @nvironment
(exteroceptive) and the 20 last ones do not (proprioceptb)eEigenvalues of the
covariance matrices in the three cases described in thénxhalized log scale:
logarithm of the eigenvalues renormalized to lie in the mf@@1]). c) Ratio of
eigenvalue to eigenvalue + 1, wherei is the eigenvalue index. The dimensions
of the tangent spaces are taken to be equal to the numbendfcagtly non-zero
eigenvalues, and the maximum of this ratio indicates thgdsgchange in the
order of magnitude of the eigenvalues (see Appendix).
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the usual euclidean group, since the brain again arrivedyad@p of dimension

20 + 24 — 38 = 6 (which is the same Lie group as before). We see that the notion
of space constituted by the brain is insensitive to majaatians in the complex-

ity of the physical structure of the device and to the detaflgs sensorimotor
coupling.

The third experiment involved the same organism as the giegexample,
but the aperture of the diaphragms was now controlled by tha binstead of
being determined by an automatic reflex. This time the bratertnined that 28
variables were needed to characterize the exteroceptoye BO were needed for
the environment and 41 for the exteroceptive inputs wheh bavironment and
body moved. Luminance in this example is a compensableblaréand we indeed
found that we now haveS + 20 — 41 = 7 compensated variables instead of 6.

The group structure, and more precisely commutativity efttansformation
involving only luminance variations with any other transfation, still theo-
retically allow for the distinction between spatial tramshations and attribute
changes. But it is worthwhile to recall that Poincare thouglgeometry in terms
of voluntary body motions. It would seem that he considered that onlyiapat
changes were subject to voluntary control. If space is thiised by the volun-
tary accessible set of sensory inputs, then the control ofl@phragms would
surely have led us to a different conception of space thaoiieeve have. If we
define space through the properties of commutativity ofsi@mations operating
on it, which is the hypothesis we favor, then the diaphragra®&no importance.

A second aspect of this third experiment should not be dssdiswhich con-
cerns the notion of environmental attributes. By allowingninance to vary in-
dependently in the five lights, one might have expected tiebtain would find
5 additional variables as compared to the case where luenianfixed. How-
ever the algorithm deduces that only a single additionalpmmeable dimension
need be introduced. This is because compensability of lanti@ with motions
of the body-environment configuration is possible only ia tase where all five
lights vary simultaneously in luminance by a common facitius we see that the
algorithm has extracted the presence of an additional frealimension, namely
luminance, independently of the number of lights that aesent.

We wish to stress for the last time that the simulations preskhere are
considered simply as illustrations of our approach. Wentlaothing about the
optimality or robustness of the methods we have used: teexe active literature
on the practical problems involved in estimating dimenaliiy and, more inter-
esting, on the parametrization of manifolds (Tenenbaur@81®oweis & Saul,
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2000; Tenenbaum, Silva, & Langford, 2000; Verbeek, Vigs&i&rose, 2002).
Our purpose here was to show how, when taken in conjunctitmavsensorimo-
tor rather than merely sensory approach, such tools couldéa by an organism
to generate the notion of space.

5 Conclusion

We have shown that thanks to a sensorimotor approach, tieraitrigid group
of space, where space is an abstract frame in which the basirgbod reasons
to embed its body and its environment, is accessible to aangsm without any
a priori knowledge. This shows why in robotics and neuralgglit may be fun-
damental to take sensory and motor information into accemmtltaneouslyin-
deed, we have shown that doing so provides a meaningful wagdafting the
dimensionality of the problem of interacting with the elviment. This is di-
rectly of interest for roboticists concerned with unsupeed learning. It is indi-
rectly of interest for neurobiologists and cognitive stigts, since it favors the
idea suggested in O'Regan & Noé&, 2001 that the brain shoulduokes from a
sensorimotor approach rather than a stimulus based or rootdrol approach:
until now it has never been shown how such an approach coalssathe notion
of space, while it is a notion we all know to be present in owairs.

It must be noted that our approach represents a basicaleratit approach
than the dimension reduction techniques that are usualpi@med, for instance
in pattern classification tasks for passive observers. denfor example Roweis
& Saul, 2000, which does dimension reduction on a set of fag#s different
expressions. In this situation, the variables that can bd tsparameterize facial
expressions will have no simple relation to the dimensiahefpace in which the
faces are embedded. If such a technique is applied to sawifieses which can
be both rigidly rotated and which can change expressiormpdhemeters determin-
ing these two types of change would not be differentiatedti@rother hand, by
the use we are suggesting here of an active observer andttbe abcompensated
variables, it is possible for our algorithm to make a pritetpdistinction between
rigid deformations like rotations and non-rigid variatolike facial expression
changes. Our approach induces a difference between siegtieré spaces, that
do not distinguish attributes and geometry, and structgessinetrical spaces.

Finally, perhaps the main interest of our approach is pbpbgal. Spatial
reasoning is the basis of our comprehension of the world andlostraction abil-
ities, so much so that the nature of space itself has beendeved to preclude
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scientific investigation. Ever since the revolution of reuczlidean geometry more
than a century ago, our euclidean intuition of space has beesidered to derive
from our experience with the world, and not from a mental anoriBut then if
our notions of geometry derive from our relation with the ldpto what extent
do these notions depend on the world, and to what extent godiygend on the
way our sensorimotor systems are constructed? Could it hehdantuition of
three-dimensional euclidean space is a consequence ofrtituse of humans’
sensorimotor systems rather than corresponding to “reaferties of the outside
world?

To answer this question, we would have to know what we meanrégl™
properties of the world, even though we obtain informatibouw it only through
our bodies and our sensors. This is problematic, since tergtehd the world we
must know about how our bodies and sensors are constructachoBucan we
formulate such knowledge without presupposing a world witkhich the body
and its sensors are embedded, and whose concepts we useribaldwse very
bodies and sensors? It is because of this fundamental pnabhkg we think it is
fruitful to develop an abstract approach such as ours, irchvthie details of the
workings of sensors and effectors play no role.

Our approach has shown that one reasonable deduction tias loan derive
from the sensorimotor constraints they are exposed to isatien of compen-
sated movements. A brain can naturally infer that the sirecof the derived
compensated transformations of the world will be coheratit tansformations
derived by any other brain with the same sensorimotor cépesj but different
details of implementation. Indeed, since the compensatagbgs precisely those
changes of the body-environment system leaving perceptiohanged, if there is
a one-to-one smooth mapping from the perception of one @geaio the percep-
tion of the other, then they will end up with the same rigiduigroThe subsequent
consensual universality of this group makes it a good catditbr the status of
physical reality. We believe that it may be this which liethet basis of our notion
of the orthogonal group of geometrical space.
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7 Appendix

7.1 Experimental Details

The motor commands were simulated in the following way:

(@, Pa) = oW oWy M — p2) — 1)
L = c(Vi-o(Va-E—1y) —11)

0.
c o — g j
ok ; sz + ROt(CLe CLQ-D ad’) : C@k - Lj||2
St = o(Uy-0(Uy- M —13) —71)

1) 7 )
K3

whereWW, W, Vi, V,, Uy, Uy are matrices with coefficients drawn randomly from
a uniform distribution between -1 and 1, as are also the vegtos, 11, v, 71, T2.
This is equivalent to the choice of the measurement unitHerdignals of our
model. ¢ is an arbitrary nonlinearity, here the hyperbolic tangemiction. The
C; i, are drawn from a centered normal distribution whose vagawhich can be
understood as the size of the retina, was so that the sertsamges resulting from
a rotation of the eye were of the same order of magnitude aertbs resulting
from a translation of the eye.

Q= (Q,...,Q,) positions of the joints
P=(P,...,P,) positions of the eyes
©

a,a La’ euler angles for the orientation of eye
Rot(a?,a?,al) rotation matrix for eye
Cik relative position of photosensérwithin eye:

d=(dy,...,dy) apertures of diaphragms
L= (Ly,...,L,) positions of the lights
0= (61,....6,) luminances of the lights

ik sensory input from exteroceptive sensaf eye:
SP sensory input from proprioceptive sengor
M, E motor command and environmental control vector

In Organism 1, motor commanty is a vector of size 40, anfl a vector of
size 40. The organism has 4 joints and two eyes with 20 phososse each. The
eyes are free to rotate in any way, including through torsnmvementsf andd
are constants drawn at random in the intefoal, 1].
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Figures 3.b and 3.c present the results obtained for a laqganoximation in a
neighborhood of siz&0~# (this is to be understood with respect to the unit mea-
sure given by the previous matrix coefficients). Sensoryispvere generated
from 50 motor commands and 50 environmental positionsiellg a normal
distribution with mean zero and standard deviation®. Coordinates differing
from zero by more than the standard deviation were put equadro. This neigh-
borhood size is the one that yielded the most significantratipa between very
small eigenvalues and non-null ones, but results could ieddrom about 0.
Generally speaking, the size of validity for the linear apgmation is of course
related to the curvature of the sensory manifold and theme general answer to
the question of what size the neighborhood should have.

Out of these 50 motor commandg/;} and 50 environmental positions
{dE;}, we produced 50 sensory inputs changés;}.z—, resulting from the
world configurations{ (M, + dM;, Ey)}, 50 sensory input chang€g.S; }an—o
resulting from the world configuration§ M,, Ey + dE;)}, and50 x 50 = 2500
sensory input change@gls; ;} resulting from the world configuration§ M, +
dM;, Ey + dE;)}.

The results of the other two experiments (Figure 4) wereionbtawith envi-
ronmental lights having variable luminance. The organisd hO joints, and a
diaphragm for each of its 4 eyes. Motor commands were of dsmenl00. For
Organism 2 the diaphragm apertukeof eyei was defined by the equation:

> Ski=1
k

that is, the aperture adjustadtomaticallyso as to ensure constant total illumina-
tion for eyei. For Organism 3¢ was under its own control:

(Q>P7a7d) :U(Wl'U(W2'M_,U2)_,U1)

Theoretically the eigenvalues of the covariance matri¢élseothree sample sets
{dS;}ap=0, {dS;}anm=o0, and{dsS; ;}, should fall into two classes, one with zero
values, and one with non-zero values. To distinguish thesectasses we used

a clustering method, and supposed that the two cldssaadV; were such that
each) of V; was more comparable in size to othes of V; than to all those of5,

and conversely. Finding the boundary between the two dasme thus be done
by ordering the)\; in decreasing order, and locating the value siich that the
ratio between\; and ;. is largest (See Figures 3.c and 4). We could also have
used an approach similar to Minka, 2000. It should be notihatithe nullity or
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Figure 4. Dimension estimation when the diaphragm apertudetermined by
reflex (a) and controlled by the organism (b).

non-nullity of the eigenvalues reflects a characteristispzfce, but their absolute
value reflects a characteristic of the sensorimotor sysfEms is where lies the
practical aspect of our problem as compared with the thieatetne.

7.2 Extensionsof the model

The concrete examples we have presented here might giveafinession that the
approach is limited to cases where motor commands and senpat are defined
as instantaneous vectors — this would be unrealistic, smaer commands and
neural afference are usually extended in time. But this ppegwoblem for our
approach, sinca1, £ andS need only to have a manifold structure, not a vectorial
structure. For simplicity we chose vectors representiegniotor commands and
sensory inputs at a particular timte but in general)d/ and .S could be vector
functions, and the sensorimotor relation would then be aagon of functionals.
In the finite case, our approach could be applied directly,marforming the PCA
would then require making a local approximation of this fimmzal relation in a
manner analogous to that proposed by Matarié & Jenkins, 90@0otor control.
In the non-finite case, we think there should also be a way ¢oous method,

23



sinceC(M,, Ey) is finite even ifS, M and€ are not.

When the functional equation is given as a differential eignathe sensori-
motor relation remains instantaneous. We will in generahble to write it in
implicit form:

V(S(t), S(t), ..., M(t),M(t),...,E(t)) =0 (5)

and then determine the variables that are functiohs (), S(t), . .. which can be
accounted for in terms a¥/(¢), M(t), . ... From there on we can apply the same
reasoning we used for the exteroceptive variables destnibthe present paper.
This extension is one of the objects of our current research.

SLinear combinations, in the case of a local linearizatiohjolv could, again, be determined
by a PCA. Such a linearization could perhaps also be appl@shtly, since linear differential
equations can be used to explain a wide range of physicalganah and in particular probably
those that can be apprehended quickly by our brains.
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