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Abstract

Is there a way for an algorithm linked to an unknown body to infer by
itself information about this body and the world it is in? Taking the case
of space for example, is there a way for this algorithm to realize that its
body is in a three dimensional world? Is it possible for this algorithm to
discover how to move in a straight line? And more basically: do these
questions make any sense at all given that the algorithm only has access
to the very high-dimensional data consisting of its sensory inputs and
motor outputs?
We demonstrate in this article how these questions can be given a positive
answer. We show that it is possible to make an algorithm that, by ana-
lyzing the law that links its motor outputs to its sensory inputs, discovers
information about the structure of the world regardless of the devices
constituting the body it is linked to. We present results from simulations
demonstrating a way to issue motor orders resulting in “fundamental”
movements of the body as regards the structure of the physical world.

1 Introduction

What is it possible to discover from behind the interface of an unknown body, embedded
in an unknown world? In previous work [4] we presented an algorithm that can deduce
the dimensionality of the outside space in which it is embedded, by making random move-
ments and studying the intrinsic properties of the relation linking outgoing motor orders to



resulting changes of sensory inputs (the so called sensorimotor law [3]).

In the present article we provide a more advanced mathematical overview together with a
more robust algorithm, and we also present a multimodal simulation.

The mathematical section provides a rigorous treatment, relying on concepts from differ-
ential geometry, of what are essentially two very simple ideas. The first idea is that trans-
formations of the organism-environment system which leave the sensory inputs unchanged
will do this independently of the code or the structure of sensors, and are in fact the only
aspects of the sensorimotor law that are independent of the code (property 1). In a single
given sensorimotor configuration the effects of such transformations induce what is called
a tangent space over which linear algebra can be used to extract a small number of inde-
pendent basic elements, which we call “measuring rod”. The second idea is that there is
a way of applying these measuring rods globally (property 2) so as to discover an overall
substructure in the set of transformations that the organism-environment system can suf-
fer, and that leave sensory inputs unchanged. Taken together these ideas make it possible,
if the sensory devices are sufficiently informative, to extract an algebraic group structure
corresponding to the intrinsic properties of the space in which the organism is embedded.

The simulation section is for the moment limited to an implementation of the first idea. It
presents briefly the main steps of an implementation giving access to the measuring rods,
and presents the results of its application to a virtual rat with mixed visual, auditory and
tactile sensors (see Figure 2). The group discovered reveals the properties of the Euclidian
space implicit in the equations describing the physics of the simulated world.

Figure 1: The virtual organism used for the simulations. Random motor commands pro-
duce random changes in the rat’s body configuration, involving uncoordinated movements
of the head, changes in the gaze direction, and changes in the aperture of the eyelids and
diaphragms.

2 Mathematical formulation

Let us noteS the sensory inputs, andM the motor outputs. They are the only things
the algorithm can access. Let us noteP the configurations of the body controlled by the
algorithm andE the configurations of the environment.

We will assume that the body position is controlled by the multidimensional motor outputs
through some lawϕa and that the sensory devices together deliver a multidimensional
input that is a functionϕb of the configuration of the body and the configuration of the
environment:

P = ϕa(M) and S = ϕb(P,E)

We shall writeϕ(M,E)
def
= ϕb(ϕa(M), E), noteS, M, P, E the sets of allS, M , P , E,

and assume thatM andE are manifolds.



2.1 Isotropy group of the sensorimotor law

Through time, the algorithm will be able to experiment a set ofsensorimotor lawslinking
its inputs to its outputs:

ϕ(·, E)
def
= {M 7→ ϕ(M,E), E ∈ E}

These are a set of functions linkingS to M , parametrized by the environmental stateE.
Our goal is to extract from this set something that does not depend on the way the sensory
information is provided. In other words something that would be the same for allh◦ϕ(·, E),
whereh is an invertible function corresponding to a change of encoding, including changes
of the sensory devices (as long as they provide access to the same information).

If we noteSym(X)
def
= {f : X → X, f one to one mapping}, and consider :

Γ(ϕ) = {f ∈ Sym(M×E) such thatϕ ◦ f = ϕ}
then

Property 1 Γ(ϕ1) = Γ(ϕ2) ⇔ ∃f ∈ Sym(S) such thatϕ1 = f ◦ ϕ2

ThusΓ(ϕ) is invariant by change of encoding, and retains fromϕ all that is independent
of the encoding. This result is easily understood using an example from physics: think
of a light sensor with unknown characteristics in a world consisting of a single point light
source. Thevaluesof the measures are very dependent on the sensor, but the fact that
they are equal on concentric spheres is an intrinsic property of the physics of the situation
(Γ(ϕ), in this case, would be the group of rotations) and is independent of the code and of
the sensor’s characteristics.

But how can we understand the transformationsf which, first, involve a manifoldE the
algorithm does not know, and second that areinvisiblesinceϕ ◦ f = ϕ. We will show that,
under one reasonable assumption, there is an algorithm that can discover the Lie algebra of
the Lie subgroups ofΓ(ϕ) that have independent actions overM andE , i.e. Lie groupsG
such thatg(M,E) = (g1(M), g2(E)) for any∈ G, with

ϕ(g1(M), g2(E)) = ϕ(M,E) ∀g ∈ G (1)

2.2 Fundamental vector fields over the sensory inputs

We will assume that the sensory inputs provide enough information to observe univocally
the changes of the environment when the exteroceptive sensors do not move. In mathemat-
ical form, we will assume that:

Condition 1 There existsU × V ⊂ M × E such thatϕ(M, ·) is an injective immersion
fromV to S for anyM ∈ U

Under this condition,ϕ(M,V) is a manifold for anyP ∈ U andϕ(M, ·) is a diffeomor-
phism fromV to ϕ(M,V). We shall writeϕ−1(M, ·) its inverse. ChoosingM0 ∈ U , it is
thus possible to define an actionφM0 of G over the manifoldϕ(M0,V) :

φM0(g, S)
def
= ϕ(M0, g2(ϕ−1(M0, S))) ∀ S ∈ ϕ(M0,V)

As a consequence (see for instance [2]), for any left invariant vector fieldX on G there is
an associated fundamental vector fieldXS onϕ(M0,V)1 :

XS(S)
def
=

d

dt
φM0(e−tX , S)|t=0 ∀ S ∈ ϕ(M0,V)

1To avoid heavy notations we have writtenXS instead ofXϕ(M0,V).



The key point for us is that this whole vector field can be discovered experimentally by
the algorithm from one vector alone : let us suppose the algorithm knows the one vector
d
dt φ1(e−tX ,M0)|t=0 ∈ TM|M0 (the tangent space ofM at M0), that we will call a
measuring rod. Then it can construct a motor commandMX(t) such that

MX(0) = M0 and ṀX(0) = − d

dt
φ1(e−tX ,M0)|t=0

and observe the fundamental field, thanks to the property:

Property 2 XS(S) = d
dt ϕ(MX(t), ϕ−1(M0, S))|t=0 ∀ S ∈ ϕ(M0,V)

Indeed the movements of the environment reveal a sub-manifoldϕ(M0,V) of the manifold
S of all sensory inputs, and this means they allow to transport the sensory image of the
given measuring rod over this sub-manifold :X(S) is the time derivative of the sensory
inputs att = 0 in the movement implied by the motor commandMX in that configuration
of the environment yieldingS at t = 0.

The fundamental vector fields are the key to our problem because [2] :[
XS , Y S]

= [X, Y ]S

where the left term uses the bracket of the vectors fields onϕ(M0,V) and the right term
uses the bracket in the Lie algebra ofG. Thus clearly we can get insight into the properties
of the latter by the study of these fields. If the actionφM0 is effective (and it is possible to
show that for anyG there is a subgroup such that it is),we have the additional properties:

1. X 7→ XS is an injective Lie algebra morphism: we can understand the whole Lie
algebra ofG through the Lie bracket over the fundamental vector fields

2. G is diffeomorphic to the group of finite compositions of fundamental flows : any
elementg of G can be written asg = eX1eX2 . . . eXk , and

φM0(g, S) = φM0(eX1 , φM0(eX2 , . . . φM0(eXk , S)))

2.3 Discovery of the measuring rods

Thus the question is: how can the algorithm come to know the measuring rods? Ifϕ is not
singular (that is: is a subimmersion onU × V, see [1]), then it can be demonstrated that:

Property 3 ∂ϕ
∂M (M0, E0)

[
Ṁ − ṀX

]
= 0 ⇒ d

dt ϕ(M(t), ·)|t=0 = XS(ϕ(M0, ·))

This means that the particular choice of one vector ofTM|M0 among those that have the
same sensory image as a given measuring rod is of no importance for the construction of
the associated vector field. Consequently, the search for the measuring rods becomes the
search for their sensory image, which form a linear subspace of the intersection of the
tangent spaces ofϕ(M0,V) andϕ(U , E0) (as a direct consequence of property 2):

∀X ∂ϕ

∂M
(M0, E0)

d

dt
φ1(e−tX ,M0)|t=0 ∈ Tϕ(M0,V)|S0

⋂
Tϕ(U , E0)|S0

But what about the rest of the intersection? Reciprocally, it can be shown that:

Property 4 Any measuring rod that has a sensory image in the intersection of the tangent
spaces ofϕ(M0,V) andϕ(U , E) for anyE ∈ V reveals a monodimensional subgroup of
transformations overV that is invariant under any change of encoding.



3 Simulation

3.1 Description of the virtual rat

We have applied these ideas to a virtual body satisfying the different necessary conditions
for the theory to be applied. Though our approach would also apply to the situation where
the sensorimotor law involves time-varying functions, for simplicity here we shall take
the restricted case whereS and M are linked by a non-delayed relationship. We thus
implemented a rat’s head with instantaneous reactions so thatM ∈ Rm andS ∈ Rs. In
the simulation,m ands have been arbitrarily assigned the value300.

The head had visual, auditory and tactile input devices (see Figure 2). The visual device
consisted of two eyes, each one being constituted by40 photosensitive cells randomly
distributed on a planar retina, one lens, one diaphragm (or pupil) and two eyelids. The
images of the9 light sources constituting the environment were projected through the lens
on the retina to locally stimulate photosensitive cells, with a total influx related to the
aperture of the diaphragm and the eyelids. The auditory device was constituted by one
amplitude sensor in each of the two ears, with a sensitivity profile favoring auditory sources
with azimuth and elevation0◦ with respect to the orientation of the head. The tactile device
was constituted by4 whiskers on each side of the rat’s jaw, that stuck to an object when
touching it, and delivered a signal related to the shift from rest position. The global sensory
inputs of dimension90 (2× 40 photosensors plus2 auditory sensors plus8 tactile sensors)
were delivered to the algorithm through a linear mixing of all the signals delivered by
these sensors, using a random matrixWS ∈ M(s, 90) representing some sensory neural
encoding in dimensions = 300.

(a)

azimuth

(b) (c)

Figure 2: The sensory system. (a) the sensory part of both eyes is constituted of randomly
distributed photosensitive cells (small dark dots). (b) the auditory sensors have a gain
profile favoring sounds coming from the front of the ears. (c) tactile devices stick to the
sources they come into contact with.

The motor device was as follows. Sixteen control parameters were constructed from lin-
ear combinations of the motor outputs of dimensionm = 300 using a random matrix
WM ∈ M(16,m) representing some motor neural code. The configuration of the rat’s
head was then computed from these sixteen variables in this way: six parameters con-
trolled the position and orientation of the head, and, for each eye, three controlled the eye
orientation plus two the aperture of the diaphragm and the eyelids. The whiskers were not
controllable, but were fixed to the head.

In the simulation we used linear encodingWS andWM in order to show that the algorithm
worked even when the dimension of the sensory and motor vectors was high. Note first
however that any, even non-linear, continuous high-dimensional function could have been
used instead of the linear mixing matrices. More important, note that even when linear



mixing is used, the sensorimotor law is highlynonlinear: the sensors deliver signals that
are not linear with respect to the configuration of the rat’s head, and this configuration is
itself not linear with respect to the motor outputs.

3.2 The algorithm

The first important result of the mathematical section was that the sensory images of the
measuring rods are in the intersection between the tangent space of the sensory inputs
observed when issuing different motor outputs while the environment is immobile, and the
tangent space of the sensory inputs observed when the command being issued is constant.

In the present simulation we will only be making use of this point, but keep in mind that
the second important result was the relation between the fundamental vector fields and
these measuring rods. This implies that the tangent vectors we are going to find by an
experiment for a given sensory inputS0 = ϕ(M0, E0) can be transported in a particular
way over the whole sub-manifoldϕ(M0,V), thereby generating the sensory consequences
of any transformation ofE associated with the Lie subgroup ofΓ(ϕ) whose measuring rods
have been found.

Figure 3: Amplitudes of the ratio of successive singular values of : (a) the estimated tangent
sensorimotor law (whenE is fixed atE0) during the bootstrapping process; (b) the matrix
corresponding to an estimated generating family for the tangent space to the manifold of
sensory inputs observed whenM is fixed atM0; (c) the matrix constituted by concatenating
the vectors found in the two previous cases. The nullspaces of the two first matrices reflect
redundant variables; the nullspace of the last one is related to the intersection of the two
first tangent spaces (see equation 2). The graphs show there are14 control parameters
with respect to the body, and27 variables to parametrize the environment (see text). The
nullspace of the last matrix leads to the computation of an intersection of dimension6
reflecting the Lie group of Euclidian transformationsSE(3) (see text).

In [4], the simulation aimed to demonstrate that the dimensions of the different vector
spaces involved were accessible. We now present a simulation that goes beyond this by
estimating these vector space themselves, in particularTϕ(M0,V)|S0

⋂
Tϕ(U , E0)|S0 , in

the case of multimodal sensory inputs and with a robust algorithm. The method previously
used to estimate the first tangent space, and more specifically its dimension, indeed required



an unrealistic level of accuracy. One of the reasons was the poor behavior of the Singular
Value Decomposition when dealing with badly conditioned matrices. We have developed a
much more stable method, that furthermore uses time derivatives as a more plausible way
to estimate the differential than multivariate linear approximation. Indeed, the nonlinear
functional relationship between the motor output and the sensory inputs implies an exact
linear relationship between their respective time derivative at a given motor outputM0

S(t) = ϕ(M(t), E0) ⇒ Ṡ(0) =
∂ϕ

∂M
(M0, E0)Ṁ(0)

and this linear relationship can be estimated as the linear mapping associating theṀ(0),
for any curve in the motor command space such thatM(0) = M0, to the resultingṠ(0).
The idea is then to use bootstrapping to estimate the time derivative of the “good” sensory
input combinations along the “good” movements so that this linear relation is diagonal and
the decomposition unnecessary : the purpose of the SVD used at each step is to provide
an indication of what vectors seem to be of interest. At the end of the process, when
the linear relationship is judged to be sufficiently diagonal, the singular values are taken
as the diagonal elements, and are thus estimated with the precision of the time derivative
estimator. Figure 3a presents the evolution of the estimated dimension of the tangent space
during this bootstrapping process.

Using this method in the first stage of the experiment when the environment is immobile
makes it possible for the algorithm, at the same time as it finds a basis for the tangent
space, to calibrate the signals coming from the head : it extracts sensory input combinations
that are meaningful as regards its own mobility. Then during a second stage, using these
combinations, it estimates the tangent space to sensory inputs resulting from movement of
the environment while it keeps its motor output fixed atM0. Finally, using the tangent
spaces estimated in these two stages, it computes their intersection : ifTSM is a matrix
containing the basis of the first tangent space, andTSE a basis of the second tangent space,
then the nullspace of[TSM , TSE ] allows to generate the intersection of the two spaces:

[TSM , TSE ]λ = 0 ⇒ TSMλM = −TSEλE whereλ = (λT
M , λT

E)T (2)

To conclude, using the pseudo-inverse of the tangent sensorimotor law, the algorithm com-
putes measuring rods that have a sensory image in that intersection; and this computation
is simple since the adaptation process made the tangent law diagonal.

3.3 Results2

Figure 3a demonstrates the evolution of the estimation of the ratio between successive sin-
gular values. The maximum of this ratio can be taken as the frontier between significantly
non-zero values and zero ones, and thus reveals the dimension of the tangent space to the
sensory inputs observed in an immobile environment. There are indeed14 effective pa-
rameters of control of the body with respect to the sensory inputs: from the16 parameters
described in section 3.1, for each eye the two parameters controlling the aperture of the di-
aphragm and the eyelids combine in a single effective one characterizing the total incoming
light influx.

After this adaptation process the tangent space to sensory inputs observed for a fixed motor
outputM0 can be estimated without bootstrapping as shown, as regards its dimension (27 =
9 × 3 for the 9 light sources moving in a three dimensional space), in Figure 3b. The
intersection is computed from the nullspace of the matrix constituted by concatenation
of generating vectors of the two previous spaces, using equation 2. This nullspace is of

2The Matlab code of the simulation can be downloaded athttp://nivea.psycho.
univ-paris5.fr/˜philipona for further examination.



Figure 4: The effects of motor commands corresponding to a generating family of6 inde-
pendent measuring rods computed by the algorithm. They reveal the control of the head
in a rigid fashion. Without the Lie bracket to understand commutativity, these movements
involve arbitrary compositions of translations and rotations.

dimension41 − 35 = 6, as shown in Figure 3c. Note that the graph shows theratio
of successive singular values, and thus has one less value than the number of vectors.
Figure 4 demonstrates the movements of the rat’s head associated with the measuring rods
found using the pseudoinverse of the sensorimotor law. Contrast these with the non-rigid
movements of the rat’s head associated with random motor commands of Figure 1.

4 Conclusion

We have shown that sensorimotor laws possess intrinsic properties related to the structure
of the physical world in which an organism’s body is embedded. These properties have an
overall group structure, for which smoothly parametrizable subgroups that act separately on
the body and on the environment can be discovered. We have briefly presented a simulation
demonstrating the way to access the measuring rods of these subgroups.

We are currently conducting our first successful experiments on the estimation of the Lie
bracket. This will allow the groups whose measuring rods have been found to be decom-
posed. It will then be possible for the algorithm to distinguish for instance between trans-
lations and rotations, and between rotations around different centers.

The question now is to determine what can be done with these first results: is this intrinsic
understanding of space enough to discover the subgroups ofΓ(ϕ) that do not act both on
the body and the environment: for example those acting on the body alone should provide
a decomposition of the body with respect to its articulations.

The ultimate goal is to show that there is a way of extractingobjectsin the environment
from the sensorimotor law, even though nothing is known about the sensors and effectors.
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