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Abstract. In Sensorimotor Contingency Theory (SMCT) differences
between the perceptual qualities of sensory modalities are explained by
the different structure of dependencies between a human’s actions and
the ensuing changes in sensory stimulation. It distinguishes modality-
related Sensory-Motor Contingencies (SMCs), that describe the structure
of changes for individual sensory modalities, and object-related SMCs,
that capture the multisensory patterns caused by actions directed to-
wards objects. These properties suggest a division of time scales in that
modality-related SMCs describe the immediate effect of actions on char-
acteristics of the sensory signal, and object-related SMCs account for
sequences of actions and sensory observations. We present a computa-
tional model of SMCs that implements this distinction and allows to
analyze the properties of the different SMC types. The emergence of
perceptual capabilities is demonstrated in a locomotive robot controlled
by this model that develops an action-based understanding for the size
of its confinement without using any distance sensors.

1 Introduction

One of the main propositions of SMCT [1,2] is that the brain neither builds
nor uses internal representations of the world to generate sensory awareness.
Instead the theory suggests, that the interrelations between actions and chang-
ing stimulation patterns impinging on the sensory organs while exploring the
environment constitute its perceptual contents and conscious experience. The
idea that action plays a constitutive role in perception has been developed by
a school of philosophers taking a pragmatic stance on cognition (see [3] for an
overview). In robotics, the construction of reliable, internal world models and
their sensible employment for the generation of behavior are major challenges,
that to date have not been satisfied. Therefore SMCT should be highly relevant
for the development of control architectures for artificial agents with cognitive
capabilities. However, surprisingly few approaches implement the core concept
of SMCT [4,5,6,7]. Many more approaches are inspired by SMCT, but in our
view fail to realize the constitutive role of action for perception.

SMCT postulates two types of SMCs, namely modality- and object-related
SMCs. Inspired by studying a computational model of SMCs that was proposed
by the authors previously [8], we argue here that these two SMC types “live” on
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different time scales. This idea will be further motivated in the next section. In
section 3 we present the results of a study in which a robot learned the SMCs
defined by the specific properties of its embodiment and the environment, and
used them to optimize its behavior. The study demonstrates how the longer
temporal context of object-related SMCs can be used as the basis for knowledge
about the size of the robot’s confinement. To make the case more interesting,
the robot does not use sensors that measure distance directly (e.g. infra-red
distance sensors) or indirectly (e.g. camera images). In the last section we discuss
implications and hypothesize about possible extensions of this approach.

2 Time Scales of SMCs

2.1 Two Types of SMCs

The different sensory organs of the human body measure different physical quan-
tities: luminance at the retina, sound pressure at the ear-drum, force at the tactile
skin receptors and in the muscle spindles, accelerations in the vestibular system
etc. It comes as no surprise, therefore, that the structure of changes in the sen-
sory signal caused by actions is different for each sensory modality. O’Regan and
Noë ([1] p. 941) mention the differences between vision and audition: while eye
movements generate changes in the sensory stimulation on the retina, they do
not affect the sensory signal coming from the ear. On the other hand, movements
of the head change the temporal asynchrony of sounds hitting the ear-drums,
which is the basis for sound localization. Of course head movements change the
luminance distribution on the retina as well, but the pattern is different from
both, the changes caused by eye movements and the changes in temporal asyn-
chrony of sound waves. They conclude that

... what does differentiate vision from, say, audition or touch, is the
structure of the rules governing the sensory changes produced by various
motor actions, that is, what we call the sensorimotor contingencies gov-
erning visual exploration. Because the sensorimotor contingencies within
different sensory domains (vision, audition, smell, etc.) are subject to
different (in)variance properties, the structure of the rules that govern
perception in these different modalities will be different in each modality.
(p. 941, emphasis theirs)

This structure of rules is what we call modality-related SMCs. Since they are
a direct consequence of the “(in)variance properties” of the physical quantities
as such, contingent on the agent’s actions, we conjecture that they capture the
instantaneous effects of these actions on the patterns of sensory stimulation.

The second type of SMCs that O’Regan and Noë identify are determined
by (visual) attributes of objects. When inspecting an object, the signals in the
visual domain change in a lawful way that is characteristic for the object at
hand. An example is the change of light reflection and color when the object is
manipulated, and the fact that we have to turn it around to be able to perceive
its backside. They suggest
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... that the visual quality of shape is precisely the set of all potential
distortions that the shape undergoes when it is moved relative to us, or
when we move relative to it. Although this is an infinite set, the brain
can abstract from this set a series of laws, and it is this set of laws which
codes shape. (p. 942, emphasis theirs)

The fact that these object-related SMCs require some kind of exploration sug-
gests that they are activated on a longer time scale, and that they establish a
form of context. To perceive an object requires to explore its attributes, be they
visual or tactile, in a process that extends over longer times than the rather
direct modulation of the signals in the different sensory modalities by the ac-
tions in this process. This is why we think that the different types of SMCs are
associated with different time scales.

2.2 Accounting for Different Time Scales in a Computational Model
of SMCs

The idea to consider the relations between types of SMCs and time scales has
been inspired by studying a computational model of SMCs that was previously
proposed by the authors. The details are given in [8], but the general idea is
pictured here again. While the agent executes an action a, sensory observations
o are recorded. The model works in discrete time, so after each time step a new
action-observation pair ao(t) – an SMC – is available. These action-observation
couplets are pushed on a first-in-first-out queue that keeps a memory of recently
executed actions and resulting sensory observations (see Fig. 1). An array of
Markov models is employed to learn the probability distributions of patterns in
this queue, corresponding to the different action-observation contexts the agent
experiences. Each Markov model takes a finite history of actions and observations
into account1. These probability distributions are a model of the SMCs of the
respective agent. Since the Markov models with short history lengths disregard
the longer context of specific situations that the agent goes through, they cap-
ture general regularities of the sensorimotor patterns. In this respect they seem
to have similar properties like modality-related SMCs. In contrast, the models
that take a longer history of actions and observations into account, represent
sensorimotor patterns that depend on the specific context. Exploration of the
visual attributes of an object is an example of such a context, and hence Markov
models with longer histories are deemed to realize object-related SMCs.

We would like to point out that in these considerations we do not make any
assumptions about the number of sensory modalities involved. In particular we
do not interpret the term modality-related in a way that suggests this SMC
type would capture structural regularities of each sensory modality in isola-
tion. Rather than employing different subsystems for different modalities, our
approach is based on the joint probability distributions of all sensory modali-
ties. Therefore differences in the sensorimotor laws between individual modalities
1 Note that the probability distribution for history length h can be determined from

the one for h + 1 by computing the marginal distribution over all ao (t− (h + 1)).
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Fig. 1. Schema of the proposed computational model of SMCs. The sequence of actions
and sensory observation (ao) is used to train Markov models of different history lengths
h. We suggest that object-related SMCs are captured by models with longer context
sizes, and modality-related SMCs by models with a short context.

are reflected in the qualitative differences of projections of the joint probabili-
ties to (the dimensions of) individual modalities, and not in physically distinct,
modality-specific subsystems. We believe that this agrees well with the very idea
of SMCT. Technically, though, it is still possible for an external observer to visu-
alize strictly unimodal SMCs by computing marginal probability distributions.

3 Robot Study

In this section we present a particular implementation of the model described in
the previous section. It demonstrates the simultaneous acquisition of modality-
and object-related SMCs, how the former control efficient instantaneous behav-
ior, and how the latter lead to meaningful long-term behavior.

3.1 Hardware

The Robotino R© robot (Festo Didactic, Esslingen, Germany) is equipped with
an omnidirectional (Swedish) wheel drive, a webcam, 9 distance sensors, and
a collision detector. For this study locomotion was restricted to forward and
backward movements at constant speed. Camera and distance sensors were not
used, because in the experimental setting (described below) the robot should rely
only on the proximal senses that are described in the following. The collision
detector is implemented in the Robotino R© by a compressed air tube, that is
attached around the circular periphery and registeres pressure changes. It does
not yield directional information about the side of the collision. Readings of the
instantaneous current consumption of the motors were used to detect whether



244 A. Maye and A.K. Engel

the robot pushes against an obstacle that had not triggered the bumper. A
custom-made accelerometer was attached to the chassis of the robot giving three-
dimensional acceleration information.

The model for controlling the robot’s behavior uses discrete time steps, and
we set the update rate to 1 Hz. Every action (move forward or backward) was
executed for 1 second. During this time sensor values were sampled at 10 Hz. At
the end of each epoch the raw sensor values were averaged and quantized. This
preprocessing step did not serve to recognize or classify the sensory input, as is
the case in conventional robot control architectures, but to reduce the complexity
of the sensory signals to a level that allows fast learning of SMCs.

3.2 Experimental Setting

The robot was placed on a flat ground between two walls at about 4 times the
diameter of the robot apart. Traveling from one wall to the opposite took about
5 seconds. While the wall in the back of the robot triggered the bumper on
collisions, the wall in the front had a protrusion that prevented further forward
movement, but did not trigger the bumper (Fig. 2). The robot should learn
to move in an smooth and energy-efficient way, and to respond appropriately
to collisions. Collision avoidance is typically implemented in the lowest levels
of conventional control architectures, relying on bumpers or distance sensors.
However, in the future we would like to employ our approach in scenarios in which
the robot is allowed to push objects around. A reflex-like obstacle-avoidance
mechanism could not be used in this case. Instead the robot must have the
opportunity to observe the sensory feedback from the bumper, the motors, and
the distance sensors to feel if it is pushing an object or bumping into a wall.

forwardbackward

bumper

Fig. 2. Profile view of the experimental setup. The robot could freely move forward
and backward between the two walls. The shape of the front wall (right) stopped the
movement, but did not trigger the bumper.

An analogous setting for humans would be a confinement in the darkness,
where the prisoner can only walk forward and backward. After exploring the
prison cell for a while, he would know that it takes 5 steps from wall to wall,
and while the one in the back feels hard, the one in the front is soft.
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3.3 Model

We employed a slightly modified version of the computational model of SMCs
described in [8]. Apart from the sensory preprocessing, the value system and the
action selection schema had to be adapted to the Robotino’s R© embodiment.

Value System. Defining a value system is a method “to make an agent do
something in the first place” [9]. Here we used only internal values as the ex-
perimental setting did not feature any rewards coming from the environment.
The features from the bumper (∈ 0, 1), motors (∈ 0, 1, 2), and accelerometer
(∈ [−2, +2]) contributed to the internal value in the following way:

vint = −bumper − 0.5motor − 0.2 max
x,y,z

(|accel|)

The internal value was always less than zero, and the robot should try to find a
behavior that makes it least “negative”.

Action Selection. In addition to the probabilities of action-observation pairs
ao conditional on a history of length h of previous action-observation pairs,
P h (ao(t + 1)|ao(t) . . . ao(t − h)), the model keeps track of the average value as-
sociated with each context of size h:

v̄h
int (ao(t + 1)|ao(t) . . . ao(t − h)) =

∑
vint (ao(t + 1)|ao(t) . . . ao(t − h))

N (ao(t) . . . ao(t − h))

with N() being the number of times having experienced this context. Using this
value probability, a simple schema to select the next action is used: Working down
from large context sizes h to smaller ones, for each possible action the average
value is found. This requires that the current context, given by the sequence
ao(t) . . . ao(t − h) has been experienced before, i.e. N (ao(t) . . . ao(t − h)) > 0.
Now the action with the best predicted value gets executed with probability
p = v̄h

int +1. Actions that reliably have led to a perfect internal value (v̄h
int = 0),

for example, would be readily executed again. Actions with an average internal
value at or below −1 would never get executed. All intermediate values leave
the opportunity to explore alternatives, with a probability depending on the
previous experience with this action.

3.4 Results

We can evaluate the behavior of the robot by comparing the components of
the value function when it is controlled by the just described SMC-based action
selection schema, and when actions are selected randomly. The plots in Fig. 3
show the time course of the internal value components for about 35 minutes
run time of the robot. During the first 5 minutes the robot has learned that
fewer switches between forward and backward drive lead to fewer acceleration
peaks and a reduced energy consumption, and hence improve the internal value.
Stability of motor current, acceleration and turning probability between 5 and
about 10 minutes runtime characterizes the conclusion of the learning phase
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Fig. 3. Time course of the sensory signals in the three modalities that affect the internal
value associated with each SMC: acceleration, current consumption, and bumper. The
solid line is from a run with the described action selection schema, the dashed line
resulted from randomly switching forward and backward drive. Turning probability is
not considered for the internal value, but gives an idea how straight the robot moved
(low values). All curves are smoothed with a moving average window of 4 minutes.

of modality-related SMC. The robot now knows how to move in an efficient
manner, but still tries to improve its internal value and explores different action
sequences. This is achieved at around 12 minutes when it discovers the full extent
of its confinement, allowing to move with a minimum number of turns. The robot
continues to switch occasionally to exploration (e.g. at around 25 minutes) for
two reasons. First it might have experienced a hitherto unknown SMC and starts
searching for appropriate responses. And second, the turn it makes in front of a
wall to avoid the collision still incurs an “unpleasant” sensation of acceleration.
Therefore it checks out the only alternative action, resulting in a collision.

One might be interested in the question why the probability of triggering the
bumper shows no significant change over time. This has to be analyzed in con-
junction with the motor current. The combination of high collision frequency
and high currents in the beginning indicates that the robot frequently pushed
against the wall for several epochs. It had not yet learned the appropriate behav-
ior upon a collision, which is to immediately drive in the opposite direction. It
shows this behavior after learning has progressed, e.g. around 15 and 25 minutes,
when it encounters again phases of frequent collision, but without a correspond-
ing increase in current consumption. The other reason for a sustained rate of
collisions is the slip between the wheels and the ground. Even though the robot
knows after some time the distance between the walls in terms of the number
of consecutive steps in one direction, it has no means to determine its absolute
position. The only way to do this is to check the wall once in a while to bring
its internal model in register with the world.
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An impression of the modality-related SMCs that the robot acquired during
the experiment can be gained from Table 1. It shows SMCs in human read-
able form for a history of length 0, i.e. P (ao(t + 1)). Most movements required
only little current, were not associated with acceleration peaks, nor triggered
the bumper. This kind of behavior was of good internal value, and hence was
exercised frequently. When the movement in the previous epoch was in the op-
posite direction, the robot incured an acceleration peak, leading to somewhat
lower internal values. Collisions with the walls made for a bad experience and
were tried to be avoided.

In Table 2 three examples of SMCs of history length 5 are given. The first
block shows the most frequently observed SMC of history length 5 (p = 0.06),
reflecting a peak in acceleration when the movement direction is changed from
forward to backward after 3 time steps. The second block shows an SMC of

Table 1. Listing of the 6 most frequently observed SMCs of history length 0. Most of
the time going forward or backward caused a low current consumption, no acceleration
peaks, and didn’t trigger the bumper (first two rows). The robot “felt” the acceleration
when it was changing the direction of movement (third and fourth row). Pushing for-
ward against the protrusion increased the current consumption (fifth row), and pushing
backward compounded a signal from the bumper (last row).

Probability Value Action Current AccelX AccelY AccelZ Bumper
0.41 0.00 → + 0 0 0
0.36 0.00 ← + 0 0 0
0.10 -0.20 ← + - 0 0
0.06 -0.20 → + + 0 0
0.03 -0.50 → ++ 0 0 0
0.01 -1.50 ← ++ 0 0 0 ∗

Table 2. Selection of SMCs of history length 5. The arrangement of features has been
transposed in comparison to Table 1. Action-observation pairs are now shown in rows,
and columns represent different time steps (progressing from right to left).

Feature ao(t + 1) ao(t) ao(t− 1) ao(t− 2) ao(t− 3) ao(t− 4) ao(t− 5)

Action ← ← ← ← → → →
Current + + + + + + +
AccelX 0 0 0 - 0 0 0
Bumper
Action → ← ← ← ← ← →
Current + + + + + + +
AccelX + 0 0 0 0 - 0
Bumper
Action ← ← ← ← ← ← →
Current ++ + + + + + +
AccelX 0 0 0 0 0 - 0
Bumper ∗
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successful turning behavior between the walls (p = 0.02). The last block is an
example for the robot’s experience when it collides with the rear wall (p = 0.001).
After switching to backward movement in time before an imminent collision
with the front wall at t − 4, it continues to move backwards until it eventually
bumps into the rear wall at t + 1, triggering the bumper and increasing the
current consumption. Since these SMCs result from exploring the properties of
the confinement, it is suggested that they correspond to object-related SMCs.

4 Conclusions

The properties of modality- and object-related SMCs suggest that they differ
with respect to the temporal context they take into account. Modality-related
SMCs reflect the momentary changes in the properties of sensory signals, and
give rise to the different qualities of sensory experiences like seeing, hearing,
touching etc. Object-related SMCs, in contrast, reflect changes in the sensory
information during exploratory processes, and hence, account for sequences of
actions and sensory observations that extend over time. They are more specific
than modality-related SMCs in the sense that their acquisition and exercise re-
quires a specific configuration of the environment, e.g. the presence of a particular
object. Beyond that, we suggest that this type of SMCs actually constitutes what
potential objects are for the agent, which then would be defined as repertoires
of family-resemblant SMCs.

Our proposed model of SMCs makes the different temporal context sizes ex-
plicit. Markov models for the probability distribution of a new action-observation
pair conditional on only recent histories of previous actions and observations
represent the direct effects that the actions of an artificial agent have on the
associated changes of the sensory signal properties. Models in which this prob-
ability distribution depends on a longer history of events are more specific for a
particular environmental situation, corresponding to object-related SMCs. The
robot study shows how both SMC types determine the overt behavior of the
agent: While modality-related SMCs let it move in a coordinated and energy-
efficient manner, object-related SMCs support its optimal behavior in the specific
environmental situation.

It might be interesting to ponder about the implications of extrapolating the
idea of a relation between types of SMCs and time scales to contexts beyond
object-related SMCs. Behavior is nothing an agent happens to have, but is some-
thing that is exercised to bring about specific consequences. These consequences
are fed back to the behaving system on a longer time scale. Time-extended ac-
tions, like driving to work or preparing a cake for example, are highly structured
and involve a similar regularity of sensorimotor correlations like SMCs in the
sense of SMCT. It is the precise sequence of turns taken with the car that deter-
mines the final destination of the ride, and the specific selection of ingredients
and instructions followed from the recipe that define the type of cake made. We
suggest, therefore, that the concept of SMCs can be extended to what might
be called “intention-related” SMCs that capture these long term regularities in



Time Scales of Sensorimotor Contingencies 249

action sequences, and that constitute our conscious experience beyond the time
scale of object perception, like “driving to work” or “preparing a cake” in this
example. We will develop models of intention-related SMCs and examine the
implications of this idea in the future.
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