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Abstract

Psychophysical studies suggest that different colors have different perceptual status: red and blue for example are
thought of as elementary sensations whereas yellowish green is not. The dominant account for such perceptual
asymmetries attributes them to specificities of the neuronal representation of colors. Alternative accounts involve
cultural or linguistic arguments. What these accounts have in common is the idea that there are no asymmetries in
the physics of light and surfaces that could underlie the perceptual structure of colors, and this is why neuronal or
cultural processes must be invoked as the essential underlying mechanisms that structure color perception. Here, we
suggest a biological approach for surface reflection properties that takes into account only the information about
light that is accessible to an organism given the photopigments it possesses, and we show that now asymmetries
appear in the behavior of surfaces with respect to light. These asymmetries provide a classification of surface
properties that turns out to be identical to the one observed in linguistic color categorization across numerous
cultures, as pinned down by cross cultural studies. Further, we show that data from psychophysical studies about
unique hues and hue cancellation are consistent with the viewpoint that stimuli reported by observers as special are
those associated with this singularity-based categorization of surfaces under a standard illuminant. The approach
predicts that unique blue and unique yellow should be aligned in chromatic space while unique red and unique
green should not, a fact usually conjectured to result from nonlinearities in chromatic pathways.
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Introduction

Particular hues of red, green, blue, and yellow are considered as
“pure colors”, often used in color-classification schemes ~Hering,
192001964; Boynton & Olson, 1987; Chichilnisky & Wandell,
1999!. There are strong indications that the choice of these colors
is not a mere cultural convention since these same colors are
consistently singled out and given names even in widely separated
human societies ~Berlin & Kay, 1969; Regier et al., 2005!. Fur-
thermore, psychophysical tests provide measures of the fact that
these colors appear unmixed, or “unique”, in the sense that they
seem to observers not to be tinted with any other color ~Jameson
& Hurvich, 1955; Valberg, 2001!.

These facts, which are considered to be at the heart of color
vision, have up till now not been adequately explained.

First, there is no known physical reason why certain colors
should be perceived as unmixed or special. In particular, lights that
elicit sensations judged to be unmixed by observers can actually be

obtained by superposing other lights, and paints judged to be
unmixed can be obtained by mixing other paints.

Second, no accurate biological basis for unique hues has so far
been found. The trichromatic theory of human vision, based on
three types of photoreceptors, would seem unable to explain the
existence of exactly four unique hues. The opponent-process theory
argues that there are four perceptually unique hues because of the
existence of so-called red0green and blue0yellow neural pathways,
but specialists in color vision agree that when the theory is
confronted with available physiological data, it does not ade-
quately predict which hues are observed to be perceptually unique
~Knoblauch et al., 1985; Webster et al., 2000; Valberg, 2001;
Kuehni, 2004!.

Here we show theoretically and numerically that, contrary to
what is usually thought, the existence of four special surface colors
can be expected from trichromatic theory alone, when constraints
satisfied by natural illuminants and surfaces are taken into account.
The colors predicted to be special from this approach are precisely
those which are found in empirical surveys to be most often given
a name by different cultures throughout the world. We shall
additionally see that the approach provides correct quantitative
predictions for foundational facts of color science, namely psy-
chophysical data about unique hues and hue cancellation.
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Terminology: accessible information

In this paper, we will call “accessible information” about a light the
restricted information about the spectral composition of that light
which is accessible through an organism’s photopigment set: For
humans, we can take for instance the three numbers corresponding
to the photon absorption counts for each of the photopigment types
present in human photoreceptors. We use the term “accessible
information” rather than “spectral coding” or “photoreceptor ex-
citations” because the two latter terms leave an ambiguity as to
whether they refer to the number of photons absorbed by photo-
pigments, or the neural coding of these numbers. We want to be
clear that the constraint we analyze herein really is about photon
catches and not neural code for color information: in particular,
properties of linearity that we consider refer to catches, not to
photoreceptor outputs.

A biological approach for reflection properties

The approach we propose involves constructing a biological re-
striction of the physicist’s notion of reflectance. From the physi-
cist’s viewpoint, reflectance is the relationship that holds between
the spectrum of the light illuminating a surface and the spectrum
of the light reflected by that surface. To take into account the loss
of information induced by photopigments, it is therefore natural for
the biologist to study the relationship between the accessible
information ~instead of the spectrum! about the illuminant and the
accessible information ~instead of the spectrum! about the re-
flected light. We will show that, with respect to standard sets of
natural illuminants, physical surfaces’ reflectance induce a linear
constraint between the accessible information about the illuminant
and the accessible information about the light reflected by that
surface. This suggests a biological conception of surface reflection
properties as linear operators in the three-dimensional space of the
accessible information.

The work of the paper will consist in studying the character-
istics of these linear operators for a large number of natural and
artificial surfaces. We shall show that for certain surfaces the
operator is singular: instead of variations in the incoming light
causing variations of the reflected light along all three directions
of the accessible information space as is usually the case, in the
singular cases, variations in incoming light only produce strong
variations in the reflected light along one or along two direc-
tions. These singular cases where a surface affects incoming
light in a simpler way than usual will be seen to predict, with
surprising accuracy, data on color naming, unique hues, and hue
cancellation.

Databases and numerical methods

Database for photopigments

We used the 10-deg Stiles and Burch Color-Matching Functions
~CMFs!, arguably the most reliable experimental data about the in
situ sensitivity of the set of human photopigments ~Stiles & Burch,
1959!. Since our approach does not rely on a linear basis for the
accessible information, we do not actually need to go back to the
absorption of individual photopigments: we could simply perform
our numerical analysis directly from CMFs. We checked that using
Stockman and Sharpe ~2000! cone fundamentals does indeed not
bring any noticeable modification of the results. In the theoretical
derivations below, we refer to photopigment absorptions since
these are the original physical constraints.

Database for illuminants

We used a set of illuminants composed from 99 daylight spectra in
Granada from Romero et al. ~1997!, 238 daylight spectra in forest
from Chiao et al. ~2000!, and a Gaussian sample of 200 spectra
constructed from basis functions S0, S1, and S2 derived by Judd
et al. ~1964!. The rationale was to consider diverse sources of
illuminants so as to avoid possible statistical artifacts resulting
from considering a too specific ecological niche.

Database for reflectances

We used two sets of reflectances: one made from artificial sur-
faces, and one made from natural surfaces. The set of artificial
surfaces was constituted by Munsell chips, whose reflectances were
taken from the University of Joensuu ~Parkkinen et al., 1989—
http:00spectral.joensuu.fi0!. We chose the set of 1600 Munsell
glossy chip reflectances because it is the one from which chips
used for the World Color Survey were taken. The set of natural
surfaces comprised 404 reflectances of leaves, petals, and barks
from the grounds of Keele University in Staffordshire ~Westland,
Shaw, & Owens, 2000!, 1862 reflectances of fruits and foliages
from French Guiana and Uganda, made available by the University
of Cambridge, 1413 reflectances of flowers and 246 reflectances of
leaves from the Chittka dataset ~Chittka & Menzel, 1992!.

Numerical methods

All numerical computations were performed using Matlab 7
~Mathworks, Natick, MA!. All spectra were resampled for com-
patibility at 5-nm intervals within the 400–700 nm band of the
spectrum. Numerical estimation of integrals was performed by a
simple dot product between sampled spectra. Standard algebraic
computations such as multivariate regression and decomposition in
eigenvalues and eigenvectors were performed using standard Mat-
lab routines without any particular options.

Mathematical treatment

In this section, we first verify numerically that over our datasets
surface reflectances can accurately be described by linear opera-
tors on accessible information. We then introduce the concept of
noninteracting basis for accessible information and show how it
can be used to define a singularity index for each surface in the
databases. The Results section confronts the measured singularity
for each surface to existing psychophysical data on color naming,
unique hues, and hue cancellation.

Computing biological reflectance mapping

Consider an illuminated surface. Let E~l! denote the spectral
power distribution of the light incident on the surface at each
wavelength l. Let R1~l!, R2~l!, and R3~l! denote the absorption
rate at each wavelength l by photopigments present in the L, M,
and S human photoreceptors. Then the accessible information
about the incident illuminant can be described by the triplet
u~E ! � ~u1~E !, u2~E !, u3~E !!, where

ui ~E ! ��Ri ~l!E~l! dl, i � 1. . .3. ~1!

Let S~l! denote the reflectance function of the surface, then the
accessible information about the reflected light is the triplet vS~E !�
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~v1S ~E !,v1S ~E !,v1S ~E !! ~superscript S specifies that this information
depends on the surface S considered, in addition to the illuminant
E ! where

vi
S ~E ! ��Ri ~l!S~l!E~l! dl, i � 1. . .3. ~2!

Now, instead of a unique illuminant assume a probability
distribution over illuminants. Then, for a given surface S, the
existence of a linear relationship between three-dimensional vari-
ables u and vS , that is, the existence of a linear operator AS in the
accessible information space such that vS � As{u, can be assessed
by computing the empirical variance of the residual h � vS �
ZAS{u, where ZAS is the 3 � 3 matrix obtained by a linear regression

of vS onto u computed from a sample of illuminants. For each
surface of our dataset, we therefore performed a linear regression
from a series of calculations simulating the illumination of the
surface successively by each illuminant of our database of daylights.

Fig. 1 summarizes the variance of residuals obtained. Results
show that the variance left after taking into account a linear
relationship between u and vS is negligible: in terms of average
value over our two sets of surfaces, this residual represents 0.3%
of the original variance of vS for the set of natural surfaces and
0.2% for the set of Munsell chips, and in terms of quantiles, more
than 90% of both natural and artificial surfaces have a residual
smaller than 0.7% of the original variance of vS . This confirms that
for the purpose of color vision, we can restrict our view of physical
reflection properties to a biological conception of linear operators
in the three-dimensional space of the accessible information.

This result was expected from the well-known low dimension-
ality of the set of natural illuminant spectra. The 400–700 nm band
of daylight spectra are well approximated by weighted sums of
only a few functions, presumably as few as three ~Judd et al., 1964;
Maloney, 1999; Chiao et al., 2000!. In these conditions, let E1~l!,
E2~l!, E3~l! be such basis functions for illuminant spectra and «1,
«2, «3 be the coordinates of E~l! in this basis so that

E~l! � (
k�1

3

«k Ek~l!. ~3!

Build 3 � 3 matrices U � @u~E1!, u~E2!, u~E3!# and V S �
@v S~E1!,vS~E2!,vS~E3!# , then we have vS~E ! � V S~«1,«2,«3!

T

and u~E ! � U~«1,«2,«3!
T , therefore if U is invertible ~basis

functions yield linearly independent photon catches triplets!, we
find that vS~E ! � V SU �1u~E !. Thus, the three dimensionality

of the illuminant space implies a linear relationship between u
and vS .

Note that the linear operator AS � V SU �1 does not depend on
a probability distribution of illuminants within the linear model
of eqn. ~3!, but recall also that the illuminant space spanned by
such a model is itself determined by a probability distribution over
the set of all possible illuminants. Note finally that even though
it provides an intuitive rationale, the three dimensionality of the
illuminant space ~questioned for instance by the work of Romero
et al. ~1997!!, is not mandatory to find a linear relationship between
u and vS since some aspects of the spectrum to be modeled by basis
functions might have little influence on both u and vS .

Noninteracting bases for accessible information

Since the biological analog AS of a physical reflectance S~l! is a
simple linear operator in the accessible information space, we can
express it in terms of eigenvalues and eigenvectors, the possibility
of such a decomposition in the complex field relying on a rather
weak assumption ~see Appendix on real and complex eigenvalues!.
If the decomposition exceptionally turns out to occur in the real
field, then eigenvalues and eigenvectors have straightforward in-
terpretation. Indeed, the three eigenvectors of AS will provide a
basis for the accessible information space such that elements of
this basis do not mutually interact with each other when they are
reflected by the surface S~l!, and are simply individually scaled
by the associated eigenvalues.

It is very simple in this basis to determine, for the surface S, the
accessible information about the reflected light from the accessible
information about the illuminant: let $r1

S , r2
S , r3

S% and $C1
S ,C2

S ,C3
S %

be the three eigenvalues and three eigenvectors of the operator AS ,
and assume that u~E ! has coordinates ~a1

S ,a2
S ,a3

S ! in the basis*
$C1

S ,C2
S ,C3

S%, then

u~E ! � (
j�1

3

aj
S Cj

S n vS ~E !� ASu~E !

� (
j�1

3

aj
S ASCj

S

� (
j�1

3

rj
Saj

S Cj
S ~4!

*Note that although u~E ! is not dependent on the surface considered,
the set of eigenvectors of AS is, and therefore the coordinates of u~E ! in
that basis do depend on the surface.

Fig. 1. Variance residuals for the set of Munsell chips
~left! and natural surfaces ~right!. Plots show the number
of surfaces as a function of the variance of the accessible
information for the reflected light accounted for by a
linear transformation of the accessible information for the
incident light. Dashed line represents the mean value of
the variance accounted for over the dataset, dotted line
represents the value of the variance at least accounted for
by 90% of surfaces.
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that is, vS~E ! has coordinates ~r1
S{a1

S , r2
S{a2

S , r3
S{a3

S ! in this same
basis. This also means that it is easy in this basis to discount the
illuminant from the accessible information about the reflected
light: it suffices to divide independently each coordinate of the
accessible information about the reflected light by the same coor-
dinate of the accessible information about the illuminant. Note that
this is only possible in this basis, and therefore a fortiori only
possible if AS has real eigenvalues.

It is a remarkable fact that noninteracting bases can be found
for most physical surfaces: in fact the majority of linear operators
associated with reflectance functions of our dataset turn out to be
decomposable in the real field. 88% of surfaces over our artificial
and natural datasets have real eigenvalues, and for the remaining
surfaces the bound r sin~6u602! ~see Appendix on real and com-
plex eigenvalues! never exceeds 0.023 for the set of Munsell chips
and 0.012 for natural surfaces. Therefore, it is possible for each
surface to find a noninteracting, or approximately noninteracting,
basis $C1

S ,C2
S ,C3

S% and real reflection coefficients $r1
S , r2

S , r3
S%. The

point is that these bases are different from surface to surface. Fig. 2
shows examples of light changes associated with such bases, for
two different surfaces.

The three reflection coefficients defined in this way for each
surface then almost provide a biological analog of the physicist’s
reflectance function. Indeed, just as the physicist describes the
reflectance function in terms of how strongly a surface reflects
each of an infinity of noninteracting monochromatic light compo-
nents, we here can describe a biological analog in terms of the
three numbers which define how strongly the surface reflects each
of the three noninteracting components of the accessible informa-
tion. It must be noted that coefficients $r1

S , r2
S , r3

S% do not depend
for instance on the fact that we are using color-matching functions
rather than cone absorption curves to represent the accessible
information. Indeed, CMFs are essentially a linear combination of
cone absorption curves ~Wandell, 1997!, and therefore using them
rather than cone absorption curves merely leads to a linear change
of coordinates for the accessible information. Since we did not use
any a priori particular coordinate system to define noninteracting
basis and reflection coefficients, this has no influence on reflection
coefficients.

Whereas reflection coefficients are an analog of the physicist’s
reflectance function, the analogy is not complete because in con-
trast with the physical basis of monochromatic spectra and as
already stressed, the biological basis may vary from surface to
surface ~hence the superscript S in Ci

S !. Yet the existence of a
unique basis actually is an implicit assumption of several standard
approaches to color constancy. The accessible information for the
illuminant being the accessible information for the light reflected
by a white surface, the existence of a unique basis for a set of

surfaces is, in addition to the gray world hypothesis, the condition
for a von Kries algorithm in this basis to achieve color constancy
of a scene constituted by such surfaces. From this viewpoint, our
work relates to previous work on spectral sharpening by Finlayson
et al. ~1994!. As for cone ratios between surfaces in a scene
~Nascimento et al., 2002!, their rigorous invariance can be seen to
require a unique, and additionally very specific, basis for these
surfaces: the basis defined by cone catches. In this paper, however,
we will not elaborate on the existence of a unique basis for a set of
surfaces and stick to the investigation of the biological constraints
induced by each surface individually.

Singular reflection properties

Contrary to the situation in physics where there are an infinity of
reflection coefficients, the biological case, with only three coeffi-
cients, presents asymmetries determined by a few specific config-
urations in the magnitudes of these coefficients. A first such
singular case is the case when all three reflection coefficients are
about equal, that is, when the three noninteracting components of
incoming light are equally transmitted. This case clearly corre-
sponds to achromatic surfaces, since the spectral composition ~or
rather, what is biologically accessible about this composition!
remains unchanged by the surface. Examples of such cases will be
white surfaces and black surfaces, with all three reflection coef-
ficients equal to 1 or to 0, respectively.

Another type of singularity will consist in cases when variations
in incoming light only produce strong variations in the reflected
light along one or along two directions. Like black and white, we
also expect that these cases will have a special perceptual status. To
quantify the extent to which a surface approaches one of these two
special cases, we considered the two ratios b1 � r10r2 and b2 �
r20r3, where ~r1, r2, r3! are the reflection coefficients sorted in de-
creasing order. Maxima of b1 correspond to surfaces that reflect
one of the elements of the noninteracting basis much more signif-
icantly than the two others; maxima of b2 correspond to surfaces
that reflect two of elements much more significantly than the third.
Because we would like for simplicity to have a unique index sum-
marizing these two cases, we could consider just taking the max-
imum of b1 and b2. But it turns out that for our dataset of surfaces,
b1 peaks at about 7 while b2 peaks at about 21, hence such an index
would essentially pinpoint how close we are from the second case.
To deal with this issue, we first normalized each of b1 and b2 to
their maximum value so that value 1 means for both “maximum
singularity”, and only then gathered the two ratios into a single
value by taking their maximum. To sum up, we defined our singu-
larity index as b� max~b1 0b1

max ,b2 0b2
max !, where b1

max and b2
max

are the maximum values of each b value over the dataset of surfaces.

Fig. 2. Illuminant changes associated with a noninteract-
ing basis of the accessible information: ~a! Munsell chip
10 R 206, ~b! Munsell chip 5 BG 708. The accessible
information for these components of the illuminant is
merely scaled by the surface, and by the amount specified
in the legend.
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Results

The Mathematical treatment section has shown that there is for
each surface a linear operator which describes the way the surface
transforms accessible information about illuminating light to ac-
cessible information about reflected light. We have also shown
how to define a singularity index which quantifies the degree to
which this linear operator corresponds to the special cases where
the variation of reflected light, under changes in illuminant, is
confined essentially to only one or two component directions,
rather than being distributed over three component directions, as is
normally the case. We now confront the singularity index, com-
puted over large databases of surfaces with empirical data on color
naming, unique hues and hue cancellation. We stress that the
singularity index was calculated from existing databases of illu-
minants, photoreceptor fundamentals, and illuminants, without
parameter adjustment of any kind.

Singular reflection properties and the World Color Survey

Fig. 3b plots the value of the singularity index for a standard set of
surface patches, namely the colored chips used to study color

categorization in cross-cultural studies ~the World Color Survey,
Berlin & Kay, 1969, made available by the International Computer
Science Institute, Berkeley!. The chips most often given a name by
widely separated human cultures ~Fig. 3a!, and which we call
“red”, “yellow”, “green” and “blue” in English, can be seen to be
within one chip of those having maximally singular reflecting
properties. According to the index we have defined, these cases are
reached for chips labeled G2, C9, F16, and H31, with reflection
coefficients $0.56,0.08,0.08%, $0.89,0.66,0.03%, $0.29,0.07,0.04%,
and $0.27,0.07,0.07%.

Two striking facts should be noted from Fig. 3. First, the figure
shows that there is a biological basis for the fact that precisely four
categories of colored surfaces should be perceived as distinctive:
these are singular in the sense that instead of reflecting three
components, they reflect essentially only one or two components
of the light described by biologically accessible information. The
fact that a finite number of categories for reflection properties
emerge from an infinity of possible reflectances, and further that
four categories emerge from taking into account a trichromatic
constraint on the visual system, already is a notable result from this
biological reading of reflection properties. A second notable result
from Fig. 3 is that these four categories of surfaces precisely

Fig. 3. Color terms across languages, and surface reflecting properties. Left panels show the number of speakers in Berlin and Kay’s
World Color Survey of 110 languages having a term that designates each of a set of colored surfaces. There are four main maxima,
corresponding to four universal “focal colors”: red, yellow, green, and blue. Right panels show our theory-based calculation for the
maximum of the two ratios defined by the first vs. second, and second vs. third reflection coefficients ~see text! for these surfaces. For
comparison with the empirical data, colored areas in the bottom right panel correspond to those chips in the World Color Survey that
were named by more than 20% of the maximum number of speakers. Letter and number notations for chips are those used in the World
Color Survey.
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correspond to colors most often given a name across widely
separated cultures, namely red, yellow, green, and blue.

Both these facts, not previously noticed, have been obtained
without appealing to neural mechanisms that underlie opponent
channels in the visual system. They are merely a consequence of
the asymmetries in surface reflecting properties induced by the
limited way biological photoreceptors sample physical spectra. It
could thus be argued that the reason the colors “red”, “yellow”,
“green”, and “blue” are so often singled out among all other colors
as being worth giving a name, is that surfaces of these colors have
the particularity that they alter incoming light in a simpler way
than other surfaces: red, green, and blue surfaces reflect essentially
one component. Yellow surfaces are also simple as compared to
other surfaces in that they reflect two components.

Singular reflection properties and unique hues

The coincidence between singularities in reflecting properties and
cross-cultural linguistic color categories suggests that beyond ac-
counting for anthropological results, singularities in reflecting
properties might also be correlated with more precise data col-
lected by psychophysicists about color perception. To investigate
this, we need to link our results about colored surfaces under
natural illuminants to psychophysical results where observers clas-
sically face “aperture colors”. Such stimuli are generated, roughly
speaking, by sending lights of controlled spectral composition
directly into the eye rather than by natural viewing of a colored
surface. To compare our approach with the results of these exper-
iments, we made the minimal conjecture that the nervous system
interpreted such stimuli as being the result of reflection from a
colored surface of light deriving from the most common illuminant
type, known as D65. This provides a simple way to transpose the
index concerning surface properties to an index concerning photon
capture by human photopigments.

To simplify the representation of this transposed index, we
reasoned that although it is known that natural reflectances are not
accurately described by using sums of only three basis functions,
such models nonetheless represent a first approximation that sug-
gests that the index should be roughly invariant by scalar multi-

plication of photon catches. Indeed, if three-dimensional models of
reflectance were exact, then the transposed indexes for propor-
tional photon catches would be the indexes of proportional reflec-
tance functions, and hence would be equal since we consider ratio
of eigenvalues. As a result, the transposed index is expected to
vary essentially on a projective structure, and we can plot the index
using ~x, y! CIE 1931 chromatic coordinates ~Wandell, 1997!.

Fig. 4a shows the transposed index based on the set of Munsell
chips. For natural surfaces on the other hand, plotted in Fig. 4c, we
found ~as noted elsewhere, see for instance Westland et al., 2000!
that the gamut spanned in chromaticity space by natural surfaces
was smaller than that spanned by Munsell chips, and in particular
too small in the green area to get a readable plot. We therefore
artificially saturated the reflectances by generating a reflectance
function DS~l! � S~l! � min S for each natural reflectance of our
database. While this manipulation must be kept in mind when
reading Fig. 4c, it seems unlikely that the correspondence found
then with Fig. 4a is a result of this mere saturation.

The crests of the index in these figures pinpoint stimuli asso-
ciated with the most singular colored surfaces. It is a remarkable
fact that these loci can be fitted by four half-planes in the full space
of the accessible information that share as an edge the central axis
defined by achromatic surfaces under the hypothesized illuminant,
in this case D65 ~Fig. 4b!. These half-planes determine specific
wavelengths at their intersections with the monochromatic locus,
and therefore identify the wavelengths producing stimuli that are
most exemplary of singular surface reflecting properties. This
provides a prediction for the monochromatic lights that we might
expect subjects will report as being “unique hues” in psychophys-
ical experiments. As seen in the figure, the predictions are very
close to observed empirical data on unique hues. Our approach is
thus able, without any parameter adjustments, to predict psycho-
physically measured unique hues purely from known biological
and physical data ~photopigment absorption curves, and illuminant
spectra and reflectance functions, respectively!.

While the hypothesized illuminant, D65 in Fig. 4, could be
suspected to play an essential role in the predictions of unique hue
wavelength in this approach, this conjecture turns out to be wrong,
at least for the case of red, green, and blue: this is because these

Fig. 4. Surface reflecting properties and unique hues. ~a! Singularity index computed from the set of Munsell chips under daylight D65,
plotted as a function CIE chromatic coordinates. Crests of the index are projected onto the ground plane as solid colored lines, marking
the loci of maximum singularity. ~b! Crests of the index extended out to the monochromatic locus. Colored triangles: psychophysical
measures of unique hues from several sources given in Table 1. ~c! Singularity index computed from a set of natural surfaces under
daylight D65, plotted as a function CIE 1931 chromatic coordinates.
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surfaces reflect only one component of the accessible informa-
tion about the incident light and therefore the accessible infor-
mation about the reflected light varies little in chromaticity as the
hypothesized illuminant changes. It turns out numerically that the
wavelength of unique yellow is also not strongly dependent either
on the temperature of the illuminant: as the illuminant hypoth-
esized to interpret tristimuli varies from temperature 30008K to
20,000 8K, the wavelength of the unique yellow determined by our
approach varies from 580 nm to 570 nm.

Another issue concerns the variability of observed unique hues.
While there is evidence that visual experience plays an important
role in the perception of unique hues as compared to phylogenetic
neuronal specifics ~Brainard et al., 2000; Lotto & Purves, 2002;
Neitz et al., 2002; Sugita, 2004!, it has until now been unclear what
features of visual experience could influence, or arguably deter-
mine, unique hues. A rough indication about the expected variabil-
ity of a unique hue within our approach, under the assumption that
the singularity is relevant if it is above some threshold, can be
given by the span over which the singularity index is “large”, for
instance greater than half of its value for the unique hue. Table 1
shows a comparison of these predictions with empirically observed
unique hues and demonstrates that the specific pattern of variabil-
ity found between observers ~Kuehni, 2004! for the different
unique hues is in agreement with what is expected from our
approach. This is further support that singularities in the biologi-
cally accessible surface reflectance properties may indeed consti-
tute the relevant features for understanding unique hues.

A last point concerns the well-established fact that unique
yellow and blue are aligned in chromaticity space, while unique
red and green are not. This is usually considered to result from a
quirk of the neural system’s structure ~Chichilnisky & Wandell,
1999; Valberg, 2001; Knoblauch & Shevell, 2001!, while our work
suggests that it could rather reflect a physical fact about the
information processed by the visual system: as seen from Fig. 4,
the crest in the singularity index for red and green are almost
colinear, whereas this is clearly not the case for blue and yellow.

Singular reflection properties and hue cancellation

A further consequence of the findings presented in this paper
relates to the well-known phenomenon of hue cancellation. Hue
cancellation quantifies the fact that the addition to a light that
appears bluish of a certain amount of light that appears yellowish
produces a light that appears neither bluish nor yellowish, and the
same for lights that appear reddish or greenish. This has been
considered as evidence that color perception was mediated by two
sensation continua, redness–greenness and yellowness–blueness
~Jameson & Hurvich, 1955; Valberg, 2001!. Yet it is a fact, noted
for instance by Mollon and Jordan, 1997, that hue-cancellation
data are a direct consequence of the loci of unique hues: in Fig. 5a,
the dash–dot cancellation curve were derived from computing the
intensity of a monochromatic yellow light to add to a bluish light
so that the corresponding stimulus is on the locus defining a unique
hue different from yellow or blue ~or the achromatic locus!, and
similarly for the dashed curve with red and green lights.

Since we have an account of the loci of unique hues from
singular surface reflection properties, we can make predictions
about hue cancellation without appealing to equilibration of “sen-
sation channels” ~Fig. 5b!. Thus, we argue that hue-cancellation
data cannot be considered as conclusive evidence for a Müllerian
theory of two sensation continua. Obviously, this does not deny the
importance of color-opponent neuronal pathways for color vision:
in particular, they optimize information transfer from the retina
~Buchsbaum & Gottschalk, 1984; Ruderman et al., 1998!, and
explain aftereffects ~McCollough, 1965!. But it casts doubt on the
claim that this neuronal specificity on its own straightforwardly
determines a fact about our conscious perceptual experience: the
existence of a few special hues.

Conclusion

We have shown how by considering the information accessible via
human photoreceptors about incoming light, it is possible to

Table 1. Comparison between psychophysical measurements of unique hues (Kuehni, 2004) and predictions based
on the structure of the singularities of surface reflecting properties. EOS means End Of Spectrum.

Unique yellow Unique green

Data set Subjects Mean ~nm! Range ~nm! Mean ~nm! Range ~nm!

Schefrin 50 577 568–589 509 488–536
Jordan & Mollon 97 — — 512 487–557
Volbrecht 100 — — 522 498–555
Webster ~a! 51 576 572–580 544 491–565
Webster ~b! 175 580 575–583 540 497–566
Webster ~c! 105 576 571–581 539 493–567
Prediction — 575 570–580 540 510–560

Unique blue Unique red

Data set Subjects Mean ~nm! Range ~nm! Mean ~nm! Range ~nm!

Schefrin 50 480 465–495 — —
Jordan & Mollon 97 — — — —
Volbrecht 100 — — — —
Webster ~a! 51 477 467–485 EOS —
Webster ~b! 175 479 474–485 605 596–700
Webster ~c! 105 472 431–486 EOS —
Prediction — 465 450–480 625 590–EOS�
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characterize reflecting surfaces by a singularity index. This index
quantifies the degree to which the surface reflects light in a simpler
way than usual. Whereas usually a surface will cause variations in
accessible information about reflected light along all three direc-
tions of the accessible information space, singular surfaces only
produce strong variations along one or two directions.

We showed how the singularity index, as calculated over a large
database of surfaces and illuminants, correctly predicts which
surfaces will be given names across widely separated cultures. We
then showed how the singularity index can be applied to lights
instead of surfaces in order to predict empirically observed unique
hues. Data on hue cancellation is therefore also well explained by
this approach.

In addition to the surprisingly accurate predictions of classic
psychophysical data, made without any parameter adjustments, the
approach proposed here has interesting philosophical implications.
Colors are a genuine quandary to science because they forcibly
instantiate the difficulty of explaining the quality of perceptual
awareness. While the dominant view today is that perceptual
qualities are determined by specificities of cortical representations
~Valberg, 2001; Crick & Koch, 2003; Zeki, 2003!, a different
stance about the role of nervous activity can be taken. Rather than
conjecturing that nervous activity determines the quality of sensa-
tions, a conjecture that opens up an “explanatory gap” ~Levine,
1983; Chalmers, 1996!, we propose instead to exploit the less
controversial fact that this neural activity enables the sensorimotor
involvement of the organism and its cognitive abilities. What
determines the perceived quality of sensations, we suggest then,
are intrinsic features of the overall constraints imposed on the
interaction of the organism with its environment ~O’Regan & Noë,
2001!. Colors have for long been used as an exemplary counter-
argument to such functional accounts of sensations, yet the com-
mon rationale and surprisingly accurate quantitative account
provided here for color naming, unique hues and hue cancellation
appears to lend credence to this approach.
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Appendix: Real and complex eigenvalues

We recall that the eigenvalues of a linear operator A on a vector space V are
the roots ~possibly complex! of the characteristic polynomial P~x! �
det~A � x{Id !. In the case where all roots have multiplicity 1, then there
is a basis of V made of corresponding eigenvectors, that is, non-null vectors
ui such that Aui � xi{ui for some complex values xi . Only a set of operators
with null measure do not have roots with multiplicity 1: hence, with
probability 1, A can be decomposed in terms of complex eigenvalues and
eigenvectors. In the case where V is three dimensional and A is real, then
A has one real root and the two other roots are either real, or conjugate:
re iu and re�iu. Recalling that from a norm 7{7 on V, it is possible to define
a norm on linear operators by 6 7A7 6� max$7Au7, 7u7�1% , it can be shown
that for all possible norms on V, the distance 6 7A � NA7 6 between an
operator A with complex eigenvalues and the closest operator NA with real
eigenvalues is no greater than r sin~6u602!. Hence, if this value is small
~compared to 1: it is a quantity without units!, then A is “approximately”
diagonal in the real field, that is, there is a basis of V such that the action
of A on any element u is well approximated by the mere scaling of the
coordinates of u in this basis.
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